LECTURE 1

Object-Oriented
Foundations &

Principles Revisited

Today's Agenda

4 Hours — Building Foundations for the Semester

Hour 1 Introducing the Running Use Case: SmartShelf

A Smart Campus Library System that grows with us each week

Hour 2 The Four Pillars of OOP — Deep Dive

Encapsulation, Abstraction, Inheritance, Reusability — critically evaluated

Hour 3 Mutable vs Immutable Objects

Understanding object state, side effects, and design implications

Hour 4 Workshop: Hands-On with SmartShelf

Build the first domain classes, apply principles practically

Lecture 1 | OOP Foundations & Principles 2/24

Hour 1

Introducing SmartShelf — Our Running Use Case

SmartShelf: Smart Campus Library System

A real-world system we'll build incrementally over 9 weeks

E The Vision

A university library needs a modern management

W1: OOP Foundations — Domain classes
system that handles:

W?2: Cloning — Book copies & references

. Books, journals, DVDs, and digital media W3: Polymorphism — Media types & search
J Student & staff memberships W4: Generics — Typed catalogs & LSP

o Borrowing, returns, and reservations W5: Exceptions — Loan validation & DbC

o Fines, notifications, and reporting , .

J Integration with external catalog APIs WE: Creational Patterns — Factories

W?7: Structural Patterns — Adapters
W8: Behavioural — Observers & strategies

WD9: Integration & Project Workshop

Lecture 1 | OOP Foundations & Principles 4/24

SmartShelf — Core Domain Entities

The building blocks we'll start with today

Attributes Attributes Attributes
isbn, title, author, memberId, name, email, name, catalog (list of
publishYear, genre, memberType, books),
isAvailable borrowedBooks, members (list of
registrationDate members),
loanRecords

Lecture 1 | OOP Foundations & Principles 5/24

Why Object-Oriented Programming?

Procedural Approach Object-Oriented Approach

. Data and functions are separate J Data and behaviour bundled together
. Global state, difficult to track changes J Encapsulated state, controlled access
. Hard to reuse — copy-paste culture J Inheritance & composition for reuse

J Modifications ripple across codebase . Changes are localized to objects

. Difficult to model real-world domains J Natural mapping to real-world entities

Lecture 1 | OOP Foundations & Principles 6/24

Hour 2

The Four Pillars of OOP — A Critical Lens

The Four Pillars of OOP

LO1: Critically evaluate the utility of these principles

S o

" ‘-’
Encapsulation Abstraction Inheritance Reusability
Bundling data with Hiding complexity. Creating new classes Writing code once, using

methods that operate on Exposing only what's from existing ones. it across different
it. Controlling access. necessary. Hierarchical reuse. contexts.

Lecture 1 | OOP Foundations & Principles 8/24

Encapsulation

Protecting data integrity through controlled access

Key Concepts

class Book {
private String isbn;
private String title;
J Private fields — hide internal state private boolean available;

J Public getters/setters — controlled access

public boolean isAvailable() {

e Validation logic inside setters e
J Information hiding — reduce coupling
public void setIsbn(String isbn) {
if (isbn == null || isbn.isEmpty())
throw new IllegalArgumentException();
this.isbn = isbn;

o Class as a "contract" with the outside

Lecture 1 | OOP Foundations & Principles

Encapsulation — Critical Evaluation

Strengths Limitations & Critiques

o Prevents invalid states — setters enforce rules . "Getter/setter" anti-pattern — just boilerplate?

. Reduces coupling — internal changes don't break

. . Over-encapsulation can make code rigid
clients

) o Reflection & serialization can bypass access control
. Easier to debug — state changes are traceable s

In SmartShelf, should Book expose setTitle() publicly? What if a cataloging system needs to correct a title after
creation? How do we balance flexibility vs. data integrity?

Lecture 1 | OOP Foundations & Principles 10/ 24

§ Abstraction

Hiding complexity, exposing only essential features

Concept
interface Searchable {
] List<Book> search(String query);
. Abstract classes define "what" not "how" }
. Interfaces declare capabilities

// Library uses Searchable
. Clients depend on abstractions, not details

// without knowing the algorithm

e Simplifies complex systems into manageable class Library {
parts private Searchable searchEngine;

. Real-world analogy: you drive a car without public List<Book> findBooks(String q){
knowing engine internals return searchEngine.search(q);

Lecture 1 | OOP Foundations & Principles 11/24

Inheritance

Creating specialised types from general ones

Medialtem (abstract)

_)) Caution: deep hierarchies create fragile code. Favor
Benefits: code reuse, natural hierarchy, polymorphic o _ _ _ .
_ _ composition over inheritance when relationships aren't
behaviour via parent type references _
truly "is-a."

Lecture 1 | OOP Foundations & Principles 12 /24

! Reusability

Write once, use everywhere — but how effectively?

Inheritance Composition Interfaces
Objects contain other objects. _
Subclass reuses parent's code.) Define contracts. Any class that
_ _ _ Flexible, loosely coupled, _ _
Quick but creates tight coupling. implements can be swapped in.
preferred.

interface Notifiable { void notify(String message); }
// EmailNotifier, SMSNotifier, PushNotifier all implement Notifiable

// Library class uses Notifiable — doesn't care which implementation

Lecture 1 | OOP Foundations & Principles 13/24

Critical Evaluation of OOP Principles

LO1 — When do these principles help, and when do they hinder?

Utility (When It Helps) Pitfall (When It Hurts)

Encapsulation Prevents invalid state, isolates change Boilerplate getters/setters, over-hiding
Abstraction Manages complexity, clean APIs Leaky abstractions, wrong boundaries
Inheritance Natural hierarchies, code reuse Fragile base class, tight coupling

Reusability Reduces duplication, faster development Premature generalisation, wrong abstractions

Key Takeaway: OOP principles are tools, not rules. A skilled developer knows when to apply them and

when to break them intentionally.

Lecture 1 | OOP Foundations & Principles 14 / 24

Hour 3

Mutable & Immutable Objects

Mutable vs Immutable Objects

Understanding object state and its design consequences
Immutable Objects

. State can change after creation J State cannot change after creation

o Setter methods modify internal fields o All fields are final, no setters

J Must handle concurrent access carefully . Thread-safe by design

. Example: Member's borrowedBooks list J Example: an ISBN object — once assigned, it
changes as books are checked out/returned should never change

Use when: state legitimately changes over the object's Use when: value represents a fixed identity or

lifetime measurement

Lecture 1 | OOP Foundations & Principles 16 /24

Building an Immutable ISBN Class

SmartShelf — ISBN as a value object

public final class ISBN { Immutability Recipe
private final String value;

public ISBN(String value) { Class declared final
if (!isvalid(value))
throw new IllegalArgumentException(
"Invalid ISBN: " + value);

this.value = value;

All fields private final
No setter methods

Validation in constructor
public String getValue() {

return this.value;

}

<N I <

Defensive copies of mutable
fields (if any)

private static boolean isValid(String v){
return v != null && v.length() == 13;
}

Lecture 1 | OOP Foundations & Principles 17 /24

Design Decision: Mutable or Immutable?

ISBN Immutable Identity value — never changes once assigned

Book Availability changes as books are borrowed/returned
Member Borrowed list, contact info can update

LoanRecord Immutable Historical record — once created, shouldn't change
DateRange Immutable Value object — represents a fixed period

Principle: Default to immutable. Only make mutable what genuinely needs to change after creation.

Lecture 1 | OOP Foundations & Principles 18/24

The Hidden Dangers of Mutability

Why shared mutable state is a source of bugs

Aliasing Bug in SmartShelf

Consequences

Book book = library.getBook("978-0...");

. Aliasing: multiple references to
// Two references to the SAME object same mutable object

Book refl = book; . Unexpected side effects across
Book ref2 = book; modules

° Race conditions in concurrent code

S ORI E LIS J Difficult to reproduce and debug

// Surprise! ref2 also sees the change

System.out.println(ref2.isAvailable()); Mitigation:
// Output: false o Defensive copies

. Immutable value objects
// Both refl and ref2 point to . Copy-on-write patterns

// the same mutable object in memory

Lecture 1 | OOP Foundations & Principles 19/24

Hour 4

Hands-On Workshop: Building SmartShelf v0.1

Workshop Exercise 1: Core Domain Classes

Build the foundation of SmartShelf — 45 minutes

Task A Create the ISBN class (immutable)

Final class, validated constructor, proper equals() and hashCode(), no setters

Task B Create the Book class (mutable)

Private fields, public getters, controlled setters with validation, uses ISBN as a value object

Task C Create the Member class

Encapsulated borrowedBooks list, methods to borrow/return books, membership validation

Checklist: Proper encapsulation? Immutability where appropriate? Validation in constructors/setters? Clean separation of
concerns?

Lecture 1 | OOP Foundations & Principles 21/24

Workshop Exercise 2: Library Class & Integration

Wire the domain together — 45 minutes

Task D Create the Library class

Manages a catalog (List<Book>), members list, and provides addBook(), registerMember() methods

Task E Implement borrowBook(memberld, isbn)

Validate member exists, book available, enforce max borrow limit (3), update both Book and Member state

Task F Write a Main class to demonstrate

Create library, add books, register members, borrow/return books — print state at each step

Discussion: What happens if two threads call borrowBook() for the same book simultaneously? We'll address this in Week
5.

Lecture 1 | OOP Foundations & Principles 22 /24

What's Coming Next

Week 2: Cloning — Deep & Shallow Cloning

SmartShelf Evolution: Cloning Books for Reservations
When a student reserves a book, should we clone the Book object or just copy the reference?

What happens when a Book contains a mutable Author object — does a shallow copy suffice?

We'll implement Cloneable interface, explore clone() pitfalls, and build a proper deep copy mechanism.

E Preparation: Read Head First Java, Chapter on Object Lifecycle. Complete Tasks A—F from today's workshop

and commit to your repository.

Lecture 1 | OOP Foundations & Principles 23 /24

Lecture 1 Summary

SmartShelf use case introduced — our semester-long project
Encapsulation: controlled access, data integrity

Abstraction: hiding complexity behind clean interfaces
Inheritance: hierarchical reuse (with caution)

Reusability: composition over inheritance

Mutable vs Immutable: default to immutable

LO1 Addressed: Critically evaluate the utility of OOP principles

