
L E C T U R E 1

Object-Oriented
Foundations &
Principles Revisited
Advanced Object-Oriented Programming

Duration: 4 Hours | LO1: Critically evaluate OOP principles

Lecture 1 | OOP Foundations & Principles 2 / 24

Today's Agenda
4 Hours — Building Foundations for the Semester

Hour 1 Introducing the Running Use Case: SmartShelf

A Smart Campus Library System that grows with us each week

Hour 2 The Four Pillars of OOP — Deep Dive

Encapsulation, Abstraction, Inheritance, Reusability — critically evaluated

Hour 3 Mutable vs Immutable Objects

Understanding object state, side effects, and design implications

Hour 4 Workshop: Hands-On with SmartShelf

Build the first domain classes, apply principles practically

Hour 1

Introducing SmartShelf — Our Running Use Case

Lecture 1 | OOP Foundations & Principles 4 / 24

SmartShelf: Smart Campus Library System
A real-world system we'll build incrementally over 9 weeks

The Vision

A university library needs a modern management
system that handles:

• Books, journals, DVDs, and digital media
• Student & staff memberships
• Borrowing, returns, and reservations
• Fines, notifications, and reporting
• Integration with external catalog APIs

9-Week Roadmap

W1: OOP Foundations — Domain classes
W2: Cloning — Book copies & references
W3: Polymorphism — Media types & search

W4: Generics — Typed catalogs & LSP
W5: Exceptions — Loan validation & DbC
W6: Creational Patterns — Factories

W7: Structural Patterns — Adapters

W8: Behavioural — Observers & strategies

W9: Integration & Project Workshop

Lecture 1 | OOP Foundations & Principles 5 / 24

SmartShelf — Core Domain Entities
The building blocks we'll start with today

Book

Attributes

isbn, title, author,

publishYear, genre,

isAvailable

Member

Attributes

memberId, name, email,

memberType,

borrowedBooks,

registrationDate

Library

Attributes

name, catalog (list of

books),

members (list of

members),

loanRecords

Lecture 1 | OOP Foundations & Principles 6 / 24

Why Object-Oriented Programming?

Procedural Approach

• Data and functions are separate

• Global state, difficult to track changes

• Hard to reuse — copy-paste culture

• Modifications ripple across codebase

• Difficult to model real-world domains

Object-Oriented Approach

• Data and behaviour bundled together

• Encapsulated state, controlled access

• Inheritance & composition for reuse

• Changes are localized to objects

• Natural mapping to real-world entities

Hour 2

The Four Pillars of OOP — A Critical Lens

Lecture 1 | OOP Foundations & Principles 8 / 24

The Four Pillars of OOP
LO1: Critically evaluate the utility of these principles

Encapsulation

Bundling data with
methods that operate on

it. Controlling access.

Abstraction

Hiding complexity.
Exposing only what's

necessary.

Inheritance

Creating new classes
from existing ones.
Hierarchical reuse.

Reusability

Writing code once, using
it across different

contexts.

Lecture 1 | OOP Foundations & Principles 9 / 24

Encapsulation
Protecting data integrity through controlled access

Key Concepts

• Private fields — hide internal state

• Public getters/setters — controlled access

• Validation logic inside setters

• Information hiding — reduce coupling

• Class as a "contract" with the outside

SmartShelf Example

class Book {
private String isbn;
private String title;
private boolean available;

public boolean isAvailable() {
return this.available;

}

public void setIsbn(String isbn) {
if (isbn == null || isbn.isEmpty())

throw new IllegalArgumentException();
this.isbn = isbn;

}
}

Lecture 1 | OOP Foundations & Principles 10 / 24

Encapsulation — Critical Evaluation

Strengths

• Prevents invalid states — setters enforce rules

• Reduces coupling — internal changes don't break
clients

• Easier to debug — state changes are traceable

Limitations & Critiques

• "Getter/setter" anti-pattern — just boilerplate?

• Over-encapsulation can make code rigid

• Reflection & serialization can bypass access control

Discussion Prompt

In SmartShelf, should Book expose setTitle() publicly? What if a cataloging system needs to correct a title after
creation? How do we balance flexibility vs. data integrity?

Lecture 1 | OOP Foundations & Principles 11 / 24

Abstraction
Hiding complexity, exposing only essential features

Concept

• Abstract classes define "what" not "how"

• Interfaces declare capabilities

• Clients depend on abstractions, not details

• Simplifies complex systems into manageable
parts

• Real-world analogy: you drive a car without
knowing engine internals

SmartShelf: Searchable Interface

interface Searchable {
List<Book> search(String query);

}

// Library uses Searchable
// without knowing the algorithm
class Library {
private Searchable searchEngine;

public List<Book> findBooks(String q){
return searchEngine.search(q);

}
}

Lecture 1 | OOP Foundations & Principles 12 / 24

Inheritance
Creating specialised types from general ones

MediaItem (abstract)

Book Journal DVD

Benefits: code reuse, natural hierarchy, polymorphic

behaviour via parent type references

Caution: deep hierarchies create fragile code. Favor

composition over inheritance when relationships aren't
truly "is-a."

Lecture 1 | OOP Foundations & Principles 13 / 24

Reusability
Write once, use everywhere — but how effectively?

Inheritance

Subclass reuses parent's code.
Quick but creates tight coupling.

Composition

Objects contain other objects.
Flexible, loosely coupled,
preferred.

Interfaces

Define contracts. Any class that
implements can be swapped in.

SmartShelf: Reusable Notification interface

interface Notifiable { void notify(String message); }
// EmailNotifier, SMSNotifier, PushNotifier all implement Notifiable
// Library class uses Notifiable — doesn't care which implementation

Lecture 1 | OOP Foundations & Principles 14 / 24

Critical Evaluation of OOP Principles
LO1 — When do these principles help, and when do they hinder?

Principle Utility (When It Helps) Pitfall (When It Hurts)

Encapsulation Prevents invalid state, isolates change Boilerplate getters/setters, over-hiding

Abstraction Manages complexity, clean APIs Leaky abstractions, wrong boundaries

Inheritance Natural hierarchies, code reuse Fragile base class, tight coupling

Reusability Reduces duplication, faster development Premature generalisation, wrong abstractions

Key Takeaway: OOP principles are tools, not rules. A skilled developer knows when to apply them and
when to break them intentionally.

Hour 3

Mutable & Immutable Objects

Lecture 1 | OOP Foundations & Principles 16 / 24

Mutable vs Immutable Objects
Understanding object state and its design consequences

Mutable Objects

• State can change after creation

• Setter methods modify internal fields

• Must handle concurrent access carefully

• Example: Member's borrowedBooks list
changes as books are checked out/returned

Use when: state legitimately changes over the object's
lifetime

Immutable Objects

• State cannot change after creation

• All fields are final, no setters

• Thread-safe by design

• Example: an ISBN object — once assigned, it
should never change

Use when: value represents a fixed identity or
measurement

Lecture 1 | OOP Foundations & Principles 17 / 24

Building an Immutable ISBN Class
SmartShelf — ISBN as a value object

public final class ISBN {
private final String value;

public ISBN(String value) {
if (!isValid(value))
throw new IllegalArgumentException(
"Invalid ISBN: " + value);

this.value = value;
}

public String getValue() {
return this.value;

}

private static boolean isValid(String v){
return v != null && v.length() == 13;

}
}

Immutability Recipe

Class declared final

All fields private final

No setter methods

Validation in constructor

Defensive copies of mutable
fields (if any)

Lecture 1 | OOP Foundations & Principles 18 / 24

Design Decision: Mutable or Immutable?

SmartShelf Class Mutable / Immutable? Reasoning

ISBN Immutable Identity value — never changes once assigned

Book Mutable Availability changes as books are borrowed/returned

Member Mutable Borrowed list, contact info can update

LoanRecord Immutable Historical record — once created, shouldn't change

DateRange Immutable Value object — represents a fixed period

Principle: Default to immutable. Only make mutable what genuinely needs to change after creation.

Lecture 1 | OOP Foundations & Principles 19 / 24

The Hidden Dangers of Mutability
Why shared mutable state is a source of bugs

Aliasing Bug in SmartShelf

Book book = library.getBook("978-0...");

// Two references to the SAME object
Book ref1 = book;
Book ref2 = book;

ref1.setAvailable(false);

// Surprise! ref2 also sees the change
System.out.println(ref2.isAvailable());
// Output: false

// Both ref1 and ref2 point to
// the same mutable object in memory

Consequences

• Aliasing: multiple references to
same mutable object

• Unexpected side effects across
modules

• Race conditions in concurrent code
• Difficult to reproduce and debug

Mitigation:
• Defensive copies
• Immutable value objects
• Copy-on-write patterns

Hour 4

Hands-On Workshop: Building SmartShelf v0.1

Lecture 1 | OOP Foundations & Principles 21 / 24

Workshop Exercise 1: Core Domain Classes
Build the foundation of SmartShelf — 45 minutes

Task A Create the ISBN class (immutable)

Final class, validated constructor, proper equals() and hashCode(), no setters

Task B Create the Book class (mutable)

Private fields, public getters, controlled setters with validation, uses ISBN as a value object

Task C Create the Member class

Encapsulated borrowedBooks list, methods to borrow/return books, membership validation

Checklist: Proper encapsulation? Immutability where appropriate? Validation in constructors/setters? Clean separation of
concerns?

Lecture 1 | OOP Foundations & Principles 22 / 24

Workshop Exercise 2: Library Class & Integration
Wire the domain together — 45 minutes

Task D Create the Library class

Manages a catalog (List<Book>), members list, and provides addBook(), registerMember() methods

Task E Implement borrowBook(memberId, isbn)

Validate member exists, book available, enforce max borrow limit (3), update both Book and Member state

Task F Write a Main class to demonstrate

Create library, add books, register members, borrow/return books — print state at each step

Discussion: What happens if two threads call borrowBook() for the same book simultaneously? We'll address this in Week
5.

Lecture 1 | OOP Foundations & Principles 23 / 24

What's Coming Next
Week 2: Cloning — Deep & Shallow Cloning

SmartShelf Evolution: Cloning Books for Reservations

When a student reserves a book, should we clone the Book object or just copy the reference?

What happens when a Book contains a mutable Author object — does a shallow copy suffice?

We'll implement Cloneable interface, explore clone() pitfalls, and build a proper deep copy mechanism.

Preparation: Read Head First Java, Chapter on Object Lifecycle. Complete Tasks A–F from today's workshop
and commit to your repository.

Lecture 1 Summary

SmartShelf use case introduced — our semester-long project

Encapsulation: controlled access, data integrity

Abstraction: hiding complexity behind clean interfaces

Inheritance: hierarchical reuse (with caution)

Reusability: composition over inheritance

Mutable vs Immutable: default to immutable

LO1 Addressed: Critically evaluate the utility of OOP principles

