LECTURE 2

Cloning:
Deep & Shallow

Copying

Today's Agenda

4 Hours — Understanding How Objects Are Copied

Hour 1 References, Aliasing & Object Identity

Why copying objects is harder than copying primitives

Hour 2 Shallow Cloning — Cloneable & clone()

Java's built-in cloning mechanism and its pitfalls

Hour 3 Deep Cloning — Copy Constructors & Beyond

Safe copying of object graphs with nested mutable state

Hour 4 Workshop: SmartShelf Reservation System

Build a reservation feature requiring proper deep copies

Lecture 2 | Cloning: Deep & Shallow 2/26

Recap — SmartShelf v0.1 (Last Week)

ISBN Immutable value object — final class, no setters, validated
Book Mutable — encapsulated fields, controlled state transitions
Member Encapsulated borrowedBooks list, defensive unmodifiable view
Library Catalog & member management, borrowBook() validation chain

Students can reserve books that are currently borrowed. The reservation needs a snapshot of the book's info — but
what happens if the original book's state changes?

Lecture 2 | Cloning: Deep & Shallow 3/26

Hour 1

References, Aliasing & Object Identity

Primitives vs Object References

The fundamental difference that makes cloning necessary

Primitives — Copy by Value Objects — Copy by Reference

int a = 42; Book a = new Book(isbn, ...);

int b = a; // Copies the value Book b = a; // Copies the REFERENCE
b = 100; b.markAsBorrowed();

// a is still 42 // a.isAvailable()? false!

// b is 100 // Both point to SAME object

// Completely independent! // Changes via b affect a!

Both variables point to the same object in heap

Q Each variable holds its own copy of the data
memory

Lecture 2 | Cloning: Deep & Shallow 5/26

Memory Layout: Aliasing in Action

SmartShelf: Two references to the same Book object
STACK HEAP

Book @ ©x7A2F

refl Ox7A2F
\ isbn: ISBN{978-0-13-468599-1}

title: "Effective Java"
ref2 OX7A2F author: "Joshua Bloch"

available: true » false

refl and ref2 hold the same memory address - changing state via either reference affects both

Lecture 2 | Cloning: Deep & Shallow 6/26

ldentity (==) vs Equality (.equals())

What It Checks SmartShelf Example m

== Same object in memory (same refl == ref2 (both point to same Book) true
address)
== Same object in memory isbnl == isbn2 (different objects, same false
value)
.equals() Same value / logical equality isbnl.equals(isbn2) (same ISBN value) true

Book original = library.findBookByIsbn(isbn).get();

Book copy = original; // NOT a clone — just another reference
copy .markAsBorrowed(); // original is also marked as borrowed!

// We need a REAL copy — a new object with the same data

Lecture 2 | Cloning: Deep & Shallow 7/26

The Copying Spectrum

Three levels of "copying" an object

DANGERO

Reference Copy us

= assignment

No new object created. Both
variables point to the same object.
Changes via one are visible through

the other.

clone()

New object created. Primitive fields
are copied. Object fields still share
references to the same nested

objects.

Deep Clone

Copy constructor

New object created. All nested
objects are also recursively copied.
Completely independent from

original.

Lecture 2 | Cloning: Deep & Shallow 8/26

Hour 2

Shallow Cloning — Cloneable & cloneg()

L. Java's Cloneable Interface

The built-in (but controversial) cloning mechanism

public class Book implements Cloneable {
private final ISBN isbn; // immutable
private String title; // mutable
private Author author; // mutable object!
private boolean available;

@Override
public Book clone() {
try {
return (Book) super.clone();
} catch (CloneNotSupportedException e){
throw new AssertionError();

Lecture 2 | Cloning: Deep & Shallow

How It Works

. Cloneable is a marker interface (no
methods)

. super.clone() creates a bitwise copy
. Primitive fields are copied by value

. Object fields are copied by
reference

I\ Result: new Book, but same Author
object shared between original and
clone

Shallow Clone — Memory Diagram

Book clone = original.clone(); — What actually happens in memory

original: Book @ ©x7A2F clone: Book @ ©xDD30© (NEW)
isbn: > ISBN @ ©xBB10 Vv isbn: > ISBN @ ©xBB10 Vv
title: "Effective Java" Vv title: "Effective Java" Vv
author: -» Author @ OxCC20 ! author: -» Author @ OxCC20 !
available: true Vv available: true Vv
SO |
S o |
S o I
~
S o |
\\~ |
ISBN @ OxBB1© Author @ 6xCC20 {name: "Joshua Bloch"}

SAFE — ISBN is immutable SHARED — changing name via clone also changes original!

Lecture 2 | Cloning: Deep & Shallow 11/26

Shallow Clone Pitfall — Live Demo

The bug that shallow cloning creates in SmartShelf

// Create a book with a mutable Author
Author author = new Author("Joshua Bloch", "joshua@example.com");
Book original = new Book(isbn, "Effective Java", author, 2018, "Programming");

// Shallow clone
Book clone = original.clone();

// Verify: different objects
System.out.println(original == clone); // false V

// THE BUG: mutate author via the clone
clone.getAuthor().setEmail("hacked@evil.com");

// Check original — it's been affected!
System.out.println(original.getAuthor().getEmail()); // "hacked@evil.com" X

// Both Book objects share the SAME Author reference

Lecture 2 | Cloning: Deep & Shallow

When Is Shallow Clone Sufficient?

Field Type Shallow Clone SmartShelf Example
Safe?

Primitive (int, boolean) v Yes available, publishYear Copied by value
Immutable object v Yes ISBN, String Cannot be modified
Mutable object X No Author, List<Book> Shared reference = aliasing bug

Shallow clone is safe ONLY when all object-typed fields are either immutable or you intentionally want shared state.
If any mutable object field exists, you need deep cloning — or you'll create aliasing bugs that are extremely hard to

debug.

Lecture 2 | Cloning: Deep & Shallow 13 /26

Hour 3

Deep Cloning — Copy Constructors & Beyond

), Copy Constructor Pattern

The recommended alternative to clone() — explicit, safe, and flexible

Advantages Over clone()

public class Author {
private String name;
private String email;

° No Cloneable needed

// Normal constructor . No CloneNotSupportedException
public Author(String name, String email) {

this.name = name;
this.email = email; J You control exactly what gets
copied

° Works with final fields

. No unsafe cast from Object

// COPY CONSTRUCTOR — creates deep copy
public Author(Author other) { ° Easy to read and debug
this.name = other.name; // String is immutable
this.email = other.email; // String is immutable

Lecture 2 | Cloning: Deep & Shallow 15/ 26

. Can convert between types

Deep Clone: Book Copy Constructor

Recursively copying nested mutable objects

public class Book {
private final ISBN isbn; // Immutable -» safe to share
private String title; // String immutable - safe to share
private Author author; // MUTABLE - must deep copy!
private boolean available;

// DEEP COPY CONSTRUCTOR

public Book(Book other) {
this.isbn = other.isbn; // Safe — ISBN is immutable
this.title other.title; // Safe — String is immutable
this.author new Author(other.author); // DEEP COPY — new Author object
this.available = other.available; // Safe — primitive

}

// Usage:
// Book deepCopy = new Book(original);
// deepCopy.getAuthor() != original.getAuthor() - true (independent!)

Lecture 2 | Cloning: Deep & Shallow 16 /26

Deep Clone — Memory Diagram

Book deepCopy = new Book(original); — Completely independent

original: Book @ Ox7A2F deepCopy: Book @ OXEE40 (NEW)

isbn: - ISBN @ ©xBB1@ (shared — immutable V') isbn: - ISBN @ ©xBB1@ (shared — immutable V')
author: - Author @ ©xCC20 author: - Author @ OxFF50 (NEW!)

Author @ OxCC20 {"Joshua Bloch", "josh@real.com"} Author @ OxFF50 {"Joshua Bloch", "josh@real.com"}
Original's own Author — independent Deep copy's own Author — independent

ISBN @ ©xBB19 — safely shared (immutable, no
need to copy)

Lecture 2 | Cloning: Deep & Shallow 17/ 26

Deep Cloning Collections

SmartShelf: Copying a Member's borrowed books list

// X WRONG — shallow list copy
List<Book> copy = new ArraylList<>(original);
// New list, but same Book references inside!

Key Insight

// v CORRECT — deep copy each element nem/AnayUQK>UEﬂ(jﬂycopmsthe
List<Book> deepCopy = original.stream() references, not the objects
.map(book -> new Book(book)) // copy ctor
.collect (Collector‘s .tolist ()) 5 To deep copy a collection:

o Create a new list

// ¥ ALTERNATIVE — for loop

List<Book> deepCopy2 = new ArraylList<>();

for (Book b : original) { J Add copies to new list
deepCopy2.add(new Book(b)); // deep copy

. Deep copy each element

}

If elements are immutable (like ISBN), a
shallow list copy is sufficient.

Lecture 2 | Cloning: Deep & Shallow 18/ 26

Comparing Cloning Approaches

= assignment Instant Not a copy
clone() X No X Needs cast Fast

Copy constructor v Deep v Yes v Yes Fast Recommended
Serialization v Deep v Yes v Yes Slow Last resort

Joshua Bloch recommends avoiding the Cloneable interface entirely. Instead, use copy constructors or static factory
methods — they're clearer, more flexible, and don't require implementing a broken interface.

Lecture 2 | Cloning: Deep & Shallow 19/ 26

SmartShelf: What Needs Deep Cloning?

ISBN No clone needed Already immutable — safe to share references

Author Copy constructor Mutable (email can change) — must deep copy

Book Copy constructor Contains mutable Author — needs deep copy for reservations
Member Copy constructor Contains mutable List<Book> — deep copy needed for snapshots
Reservation Uses deep copied Book NEW CLASS — stores a snapshot of the book at reservation time

Design Principle

Immutable objects are the best friends of cloning. The more immutable your design, the less deep copying you need.
This is why we made ISBN immutable in Week 1 — it pays off now.

Lecture 2 | Cloning: Deep & Shallow 20/ 26

Hour 4

Workshop: SmartShelf Reservation System

Workshop Exercise 1: Author & Cloning Infrastructure

Build the cloning foundation — 40 minutes

Task A Create the Author class (mutable)

Fields: name, email. Setters with validation. Implement a copy constructor: Author(Author other)

Task B Add copy constructors to Book

Implement Book(Book other) — share ISBN (immutable), deep copy Author. Keep Cloneable for comparison.

Task C Demonstrate the shallow clone bug

Clone a Book, modify the Author via the clone, verify original is affected. Then show deep copy fixes it.

Key Question: After deep copy, are original.getAuthor() == copy.getAuthor()? What about original.getisbn() == copy.getisbn()?

Lecture 2 | Cloning: Deep & Shallow 22 /26

Workshop Exercise 2: Reservation System

Apply cloning to a real feature — 50 minutes

Task D Create the Reservation class

Fields: reservationld, memberld, bookSnapshot (deep copy of Book), reservationDate, status. The bookSnapshot
must be independent.

Task E Add reserveBook() to Library

Validate: member exists, book exists, book is currently borrowed. Create a Reservation with a deep copy of the
book's current state.

Task F Full Integration Demo

Borrow books, make reservations, modify the original book's author — prove the reservation snapshot is
unaffected.

This is the real-world motivation for deep cloning: preserving a historical snapshot even when the original
changes.

Lecture 2 | Cloning: Deep & Shallow 23/ 26

What's Coming Next

Week 3: Polymorphism, Dynamic Binding & Duck Typing

SmartShelf Evolution: Multiple Media Types

SmartShelf will handle Books, Journals, DVDs, and DigitalMedia — all extending Medialtem.
We'll use runtime polymorphism to process mixed collections and dynamic binding for search.

How do you search across different media types with different fields? Polymorphism solves this.

E Preparation: Read Head First Java, Ch. 7-8 (Inheritance & Interfaces). Complete Tasks A—F from today and push
to your repository.

Lecture 2 | Cloning: Deep & Shallow 24 /26

Lecture 2 Summary

Reference copy (=) creates aliases, not copies

Shallow clone: new object, shared nested references
Deep clone via copy constructors: safe & recommended
Immutable objects (ISBN) never need cloning

Reservation system built with deep copy snapshots

9
A
O
v
y?
@

Design for immutability - less cloning needed

SmartShelf v0.2 — Now with Author, deep cloning, and reservations

Questions?

Next Week: Polymorphism, Dynamic Binding & Duck Typing

