
L E C T U R E 2

Cloning:
Deep & Shallow
Copying
Advanced Object-Oriented Programming

Duration: 4 Hours | Building on SmartShelf v0.1

Lecture 2 | Cloning: Deep & Shallow 2 / 26

Today's Agenda
4 Hours — Understanding How Objects Are Copied

Hour 1 References, Aliasing & Object Identity

Why copying objects is harder than copying primitives

Hour 2 Shallow Cloning — Cloneable & clone()

Java's built-in cloning mechanism and its pitfalls

Hour 3 Deep Cloning — Copy Constructors & Beyond

Safe copying of object graphs with nested mutable state

Hour 4 Workshop: SmartShelf Reservation System

Build a reservation feature requiring proper deep copies

Lecture 2 | Cloning: Deep & Shallow 3 / 26

Recap — SmartShelf v0.1 (Last Week)

ISBN Immutable value object — final class, no setters, validated

Book Mutable — encapsulated fields, controlled state transitions

Member Encapsulated borrowedBooks list, defensive unmodifiable view

Library Catalog & member management, borrowBook() validation chain

New Requirement This Week
Students can reserve books that are currently borrowed. The reservation needs a snapshot of the book's info — but
what happens if the original book's state changes?

Hour 1

References, Aliasing & Object Identity

Lecture 2 | Cloning: Deep & Shallow 5 / 26

Primitives vs Object References
The fundamental difference that makes cloning necessary

Primitives — Copy by Value

int a = 42;
int b = a; // Copies the value

b = 100;

// a is still 42
// b is 100
// Completely independent!

Each variable holds its own copy of the data

Objects — Copy by Reference

Book a = new Book(isbn, ...);
Book b = a; // Copies the REFERENCE

b.markAsBorrowed();

// a.isAvailable()? false!
// Both point to SAME object
// Changes via b affect a!

Both variables point to the same object in heap
memory

Lecture 2 | Cloning: Deep & Shallow 6 / 26

Memory Layout: Aliasing in Action
SmartShelf: Two references to the same Book object

STACK

ref1 0x7A2F

ref2 0x7A2F

HEAP

Book @ 0x7A2F

isbn: ISBN{978-0-13-468599-1}
title: "Effective Java"
author: "Joshua Bloch"
available: true → false

ref1 and ref2 hold the same memory address → changing state via either reference affects both

Lecture 2 | Cloning: Deep & Shallow 7 / 26

Identity (==) vs Equality (.equals())

Operator What It Checks SmartShelf Example Result

== Same object in memory (same
address)

ref1 == ref2 (both point to same Book) true

== Same object in memory isbn1 == isbn2 (different objects, same
value)

false

.equals() Same value / logical equality isbn1.equals(isbn2) (same ISBN value) true

SmartShelf: Why this matters for cloning

Book original = library.findBookByIsbn(isbn).get();
Book copy = original; // NOT a clone — just another reference
copy.markAsBorrowed(); // original is also marked as borrowed!
// We need a REAL copy — a new object with the same data

Lecture 2 | Cloning: Deep & Shallow 8 / 26

The Copying Spectrum
Three levels of "copying" an object

Reference Copy DANGERO
US

= assignment

No new object created. Both

variables point to the same object.

Changes via one are visible through

the other.

Shallow Clone PARTIAL

clone()

New object created. Primitive fields

are copied. Object fields still share

references to the same nested

objects.

Deep Clone SAFE

Copy constructor

New object created. All nested

objects are also recursively copied.

Completely independent from

original.

Hour 2

Shallow Cloning — Cloneable & clone()

Lecture 2 | Cloning: Deep & Shallow 10 / 26

Java's Cloneable Interface
The built-in (but controversial) cloning mechanism

SmartShelf: Book implements Cloneable

public class Book implements Cloneable {
private final ISBN isbn; // immutable
private String title; // mutable
private Author author; // mutable object!
private boolean available;

@Override
public Book clone() {

try {
return (Book) super.clone();

} catch (CloneNotSupportedException e){
throw new AssertionError();

}
}

}

How It Works

• Cloneable is a marker interface (no
methods)

• super.clone() creates a bitwise copy

• Primitive fields are copied by value

• Object fields are copied by
reference

⚠ Result: new Book, but same Author
object shared between original and
clone

Lecture 2 | Cloning: Deep & Shallow 11 / 26

Shallow Clone — Memory Diagram
Book clone = original.clone(); — What actually happens in memory

original: Book @ 0x7A2F

isbn: → ISBN @ 0xBB10 ✓
title: "Effective Java" ✓
author: → Author @ 0xCC20 ⚠
available: true ✓

clone: Book @ 0xDD30 (NEW)

isbn: → ISBN @ 0xBB10 ✓
title: "Effective Java" ✓
author: → Author @ 0xCC20 ⚠
available: true ✓

Author @ 0xCC20 {name: "Joshua Bloch"}

SHARED — changing name via clone also changes original!

ISBN @ 0xBB10

SAFE — ISBN is immutable

Lecture 2 | Cloning: Deep & Shallow 12 / 26

Shallow Clone Pitfall — Live Demo
The bug that shallow cloning creates in SmartShelf

// Create a book with a mutable Author
Author author = new Author("Joshua Bloch", "joshua@example.com");
Book original = new Book(isbn, "Effective Java", author, 2018, "Programming");

// Shallow clone
Book clone = original.clone();

// Verify: different objects
System.out.println(original == clone); // false ✓

// THE BUG: mutate author via the clone
clone.getAuthor().setEmail("hacked@evil.com");

// Check original — it's been affected!
System.out.println(original.getAuthor().getEmail()); // "hacked@evil.com" ✗

// Both Book objects share the SAME Author reference
System.out.println(original.getAuthor() == clone.getAuthor()); // true — PROBLEM!

Lecture 2 | Cloning: Deep & Shallow 13 / 26

When Is Shallow Clone Sufficient?

Field Type Shallow Clone
Safe?

SmartShelf Example Why

Primitive (int, boolean) ✓ Yes available, publishYear Copied by value

Immutable object ✓ Yes ISBN, String Cannot be modified

Mutable object ✗No Author, List<Book> Shared reference = aliasing bug

Rule of Thumb

Shallow clone is safe ONLY when all object-typed fields are either immutable or you intentionally want shared state.

If any mutable object field exists, you need deep cloning — or you'll create aliasing bugs that are extremely hard to
debug.

Hour 3

Deep Cloning — Copy Constructors & Beyond

Lecture 2 | Cloning: Deep & Shallow 15 / 26

Copy Constructor Pattern
The recommended alternative to clone() — explicit, safe, and flexible

SmartShelf: Author with Copy Constructor

public class Author {
private String name;
private String email;

// Normal constructor
public Author(String name, String email) {

this.name = name;
this.email = email;

}

// COPY CONSTRUCTOR — creates deep copy
public Author(Author other) {

this.name = other.name; // String is immutable
this.email = other.email; // String is immutable

}
}

Advantages Over clone()

• No Cloneable needed

• No CloneNotSupportedException

• No unsafe cast from Object

• You control exactly what gets
copied

• Works with final fields

• Easy to read and debug

• Can convert between types

Lecture 2 | Cloning: Deep & Shallow 16 / 26

Deep Clone: Book Copy Constructor
Recursively copying nested mutable objects

public class Book {
private final ISBN isbn; // Immutable → safe to share
private String title; // String immutable → safe to share
private Author author; // MUTABLE → must deep copy!
private boolean available;

// DEEP COPY CONSTRUCTOR
public Book(Book other) {

this.isbn = other.isbn; // Safe — ISBN is immutable
this.title = other.title; // Safe — String is immutable
this.author = new Author(other.author); // DEEP COPY — new Author object
this.available = other.available; // Safe — primitive

}

// Usage:
// Book deepCopy = new Book(original);
// deepCopy.getAuthor() != original.getAuthor() → true (independent!)

}

Lecture 2 | Cloning: Deep & Shallow 17 / 26

Deep Clone — Memory Diagram
Book deepCopy = new Book(original); — Completely independent

original: Book @ 0x7A2F

isbn: → ISBN @ 0xBB10 (shared — immutable ✓)
author: → Author @ 0xCC20

deepCopy: Book @ 0xEE40 (NEW)

isbn: → ISBN @ 0xBB10 (shared — immutable ✓)
author: → Author @ 0xFF50 (NEW!)

Author @ 0xCC20 {"Joshua Bloch", "josh@real.com"}

Original's own Author — independent

Author @ 0xFF50 {"Joshua Bloch", "josh@real.com"}

Deep copy's own Author — independent

ISBN @ 0xBB10 — safely shared (immutable, no
need to copy)

Lecture 2 | Cloning: Deep & Shallow 18 / 26

Deep Cloning Collections
SmartShelf: Copying a Member's borrowed books list

// ✗ WRONG — shallow list copy
List<Book> copy = new ArrayList<>(original);
// New list, but same Book references inside!

// ✓ CORRECT — deep copy each element
List<Book> deepCopy = original.stream()

.map(book -> new Book(book)) // copy ctor

.collect(Collectors.toList());

// ✓ ALTERNATIVE — for loop
List<Book> deepCopy2 = new ArrayList<>();
for (Book b : original) {

deepCopy2.add(new Book(b)); // deep copy
}

Key Insight

new ArrayList<>(list) only copies the
references, not the objects

To deep copy a collection:
• Create a new list
• Deep copy each element
• Add copies to new list

If elements are immutable (like ISBN), a
shallow list copy is sufficient.

Lecture 2 | Cloning: Deep & Shallow 19 / 26

Comparing Cloning Approaches
Approach Deep? Final Fields? Type Safe? Performance Verdict

= assignment ✗ No N/A N/A Instant Not a copy

clone() Shallow only ✗ No ✗ Needs cast Fast Avoid

Copy constructor ✓ Deep ✓ Yes ✓ Yes Fast Recommended

Serialization ✓ Deep ✓ Yes ✓ Yes Slow Last resort

From Effective Java (Item 13)

Joshua Bloch recommends avoiding the Cloneable interface entirely. Instead, use copy constructors or static factory
methods — they're clearer, more flexible, and don't require implementing a broken interface.

Lecture 2 | Cloning: Deep & Shallow 20 / 26

SmartShelf: What Needs Deep Cloning?
Class Cloning Strategy Reasoning

ISBN No clone needed Already immutable — safe to share references

Author Copy constructor Mutable (email can change) — must deep copy

Book Copy constructor Contains mutable Author — needs deep copy for reservations

Member Copy constructor Contains mutable List<Book> — deep copy needed for snapshots

Reservation Uses deep copied Book NEW CLASS — stores a snapshot of the book at reservation time

Design Principle

Immutable objects are the best friends of cloning. The more immutable your design, the less deep copying you need.
This is why we made ISBN immutable in Week 1 — it pays off now.

Hour 4

Workshop: SmartShelf Reservation System

Lecture 2 | Cloning: Deep & Shallow 22 / 26

Workshop Exercise 1: Author & Cloning Infrastructure
Build the cloning foundation — 40 minutes

Task A Create the Author class (mutable)

Fields: name, email. Setters with validation. Implement a copy constructor: Author(Author other)

Task B Add copy constructors to Book

Implement Book(Book other) — share ISBN (immutable), deep copy Author. Keep Cloneable for comparison.

Task C Demonstrate the shallow clone bug

Clone a Book, modify the Author via the clone, verify original is affected. Then show deep copy fixes it.

Key Question: After deep copy, are original.getAuthor() == copy.getAuthor()? What about original.getIsbn() == copy.getIsbn()?

Lecture 2 | Cloning: Deep & Shallow 23 / 26

Workshop Exercise 2: Reservation System
Apply cloning to a real feature — 50 minutes

Task D Create the Reservation class
Fields: reservationId, memberId, bookSnapshot (deep copy of Book), reservationDate, status. The bookSnapshot
must be independent.

Task E Add reserveBook() to Library
Validate: member exists, book exists, book is currently borrowed. Create a Reservation with a deep copy of the
book's current state.

Task F Full Integration Demo
Borrow books, make reservations, modify the original book's author — prove the reservation snapshot is
unaffected.

This is the real-world motivation for deep cloning: preserving a historical snapshot even when the original
changes.

Lecture 2 | Cloning: Deep & Shallow 24 / 26

What's Coming Next
Week 3: Polymorphism, Dynamic Binding & Duck Typing

SmartShelf Evolution: Multiple Media Types

SmartShelf will handle Books, Journals, DVDs, and DigitalMedia — all extending MediaItem.

We'll use runtime polymorphism to process mixed collections and dynamic binding for search.

How do you search across different media types with different fields? Polymorphism solves this.

Preparation: Read Head First Java, Ch. 7–8 (Inheritance & Interfaces). Complete Tasks A–F from today and push
to your repository.

Lecture 2 Summary

Reference copy (=) creates aliases, not copies

Shallow clone: new object, shared nested references

Deep clone via copy constructors: safe & recommended

Immutable objects (ISBN) never need cloning

Reservation system built with deep copy snapshots

Design for immutability → less cloning needed

SmartShelf v0.2 — Now with Author, deep cloning, and reservations

Questions?
Next Week: Polymorphism, Dynamic Binding & Duck Typing

