2 Search Engines

in Both Traditional
and Semantic Web
Environments

As we discussed in Chapter 1, before we get into the nuts and bolts of the Semantic
Web, let us first understand how a search engine works. More specifically, in this
chapter we are going to study the behavior of a search engine in both the traditional
Web environment and Semantic Web environment. This detailed study and compar-
ison will enable us to see the clear benefits offered by the Semantic Web, and it will
also show some important components that are vital in the world of the Semantic
Web. This will naturally provide us with a solid foundation for going further.
Understanding the major components in the Semantic Web world and realizing how
they fit together will make our life much easier. The technical details presented in
the next several chapters will all seem to be a natural extension of the current Web,
and this is exactly how the Semantic Web should be comprehended.

2.1 SEARCH ENGINE FOR THE TRADITIONAL WEB

Today, the most visible component of the Internet is the Web. It has hundreds of
millions of pages available, presenting information on an amazing variety of topics
— in fact, you can find almost anything you are interested in on the Web, and all
this information originates from search engines.

In the current world, there are many different search engines you can chose from.
Perhaps the most widely used ones are Google and Yahoo! There are also other search
engines such as AltaVista, Lycos, etc. However, in some sense, all these search engines
are created equal, and in this section, we are going to study how they are created.

More importantly, remember the frustration each one of us has experienced when
using a search engine? In this section, we will begin to understand the root cause
of this frustration as well. In fact, based on the discussion in this section, you can
even start building your own search engine and play with it to see whether there is
a better way to minimize the frustration.

2.1.1 BuiLDING THE INDEX TABLE

Even before a search engine is made available on the Web, it starts preparing a huge
index table for its potential users. This process is called the indexation process, and

17

18 Introduction to the Semantic Web and Semantic Web Services

it will be conducted repeatedly throughout the life of the search engine. The quality
of the generated index table to a large extent decides the quality of a query result.

The indexation process is conducted by a special piece of software usually called
a spider, or crawler. A crawler visits the Web to collect literally everything it can
find by constructing the index table during its journey. To initially kick off the
process, the main control component of a search engine will provide the crawler
with a seed URL (in reality, this will be a set of seed URLs), and the crawler, after
receiving this seed URL, will begin its journey by accessing this URL: it downloads
the page pointed to by this URL and does the following:

Step 1: Build an index table for every single word on this page. Let us use
URL, to denote the URL of this page. Once this step is done, the index table
will look like this (see Figure 2.1).

It reads like this: word, shows up in this document, which has a URL, as its
location on the Web, and the same with word,, word,, and so on. But what
if some word shows up in this document more than once? The crawler
certainly needs to remember this information. Therefore, an improved ver-
sion of the initial index table will look like the one shown in Figure 2.2.

Now, we can read the index table like this: word, is mapped to an object of
“location structure,” which has two pieces of information: the first piece of
information says word; shows up in a document located at URL,,, the second
piece of information tells us word; shows up in this document ¢; > 1 times.

At this moment, it seems that the crawler has collected a fair amount of
information about this current page. It is time to move on.

Step 2: From the current page, find the first link (which is again a URL
pointing to another page) and “crawl” to this link, meaning to download
the page pointed to by this link.

Step 3: After downloading this page, start reading each word on this page, and
add them all to the index table.

Once the crawler reaches the new page by following the link on the current
page, it will again start reading each and every word on this new page and
add all the words to the index table. Now there are two possibilities: (1)

word URLo

word 2 URLo

wordy URLo

FIGURE 2.1 The initial index table built by the crawler.

Search Engines in Both Traditional and Semantic Web Environments 19

word, documentLocation: URL,
NumOfAppearances: C,

wordy documentLocation: URL,
NumOfAppearances: C,

wordy documentLocation: URL,
NumOfAppearances: Cy

FIGURE 2.2 An improved version of the initial index table.

the current word from this new page has never been added to the index
table, or (2) it already exists in the index table.

The simple case is the case where the word has never been added to the index
table; we just need to add it and the newly added item looks just like any
row in Figure 2.2. If the word (for example, word, shows up again in this
new page) has already been added to the index table, then a little more
work needs to be done: locate the word in the index table and grow its
location structure, as described in Figure 2.3.

Using word, as an example, the index table is now read like this: word, shows
up in both pages. In the first page, it shows up ¢, times, and in the second
page (pointed to by URL,), it shows up C,_, times. Also, note that the length
of the index table now changes to N + M, signifying that new words were
found in the current document page.

Now the crawler finishes the second page as usual; to crawl all the pages, it
continues its journey by going to step 4.

Step 4: Go to step 2, until no unvisited link exists (more about this later).
After steps 2 and 3 have been repeated many times, the index table will
look like the one shown in Figure 2.4, which is interpreted in the same way
you understand Figure 2.3.

Steps 1 to 4 describe the basic flow of the crawler; it is one of the possible ways
of visiting the whole Web. In reality, however, steps 2 and 3 will never be finished,
because of limited resources (memory, time, etc.). As reported by a recent article in
Federal Computer Week [31], Google, one of the most popular search engines, at
best can index about 4 billion to 5 billion Web pages, representing only 1% of the
World Wide Web (www).

20 Introduction to the Semantic Web and Semantic Web Services

wordy documentLocation: URLg
NumOfAppearances: C;
word; documentLocation: URLg = documentLocation: URL;
NumOfAppearances: C, NumOFfAppearances: C;_;
WOT Gy documentLocation: URLg
NumOfAppearances: Cy

FIGURE 2.3 word, in index table shows up on two pages.

word; docLocation:URLy ™| docLocation:URL;
NumOfApps:Cy NumOfApps:C;

word -

2 docLocation:URLo —®= docLocation:URL; [™ °°****—®— docLocation:URLg

NumOfApps:C, NumOfApps:C; NumOFApps : Ck

wordr
docLocation:URLy —®= docLocation:URL, [—®="*°*"* —» docLocation:URL,
NumOFApps:Ct NumOfApps:Cp NumOfApps:Cp

FIGURE 2.4 Final index table.

2.1.2 CONDUCTING THE SEARCH

Now that the crawler has prepared the index table, a user can start a search. The
simplest query is a single word, such as word,. What if word, is never collected into
the index table, meaning none of the documents the crawler ever visited has word,
in it? The search engine simply returns a message such as “no results have been
found for your query.” In our case, word, is indeed in the index table; the search
engine then iterates through the document records (as shown in Figure 2.5) and

Search Engines in Both Traditional and Semantic Web Environments 21

a query for word, ——> search engine |
word, docLocation:URL, || docLocation:URL;
NumOfApps:C, NumOfApps:C;
word. ' - - -
i | docLocation:URL, |—m= docLocation:URL; e ***** —m— docLocation:URLy
i | NumOfApps:C, NumOfApps:C; NumOfApps :C
wordy -
docLocation:URL; | —m docLocation:URL, | —mec***** —m=| docLocation:URL,
NumOfApps:Cr NumOFApps:C, NumOFApps:C,

FIGURE 2.5 Search engine locates the document records for querying word,

returns them in a particular order to the user, who can then click on each individual
URL to get to the real Web page.

In what particular order are the document records searched? Given the structure
of our index table, each document containing word, inside it also has a number
associated with it that indicates how many times the word has turned up in this
document. Therefore, the search engine with this index table can only sort the
document according to this number: the document in which word, shows up the
most number of times will appear at the top of the list returned to the user.

This is where the concept of rank kicks in: when returning the pages to the user,
the search engine has to decide in which order they should be presented. You might
also wonder what else is important for the quality of a search engine. Well, you are
right: the search engine we just presented is in its simplest form; it will work if you
code it, but there is a lot more to it.

2.1.3 AbpbDITIONAL DETAILS

In the simplest case, a search engine could just index the word and associate it with
the URLs where it was found. However, this makes the engine not quite useful as
there would be no way of telling whether the word was used in an important or an
incidental way on the page. For instance, the word could be used just once in the
document or it could be used many times. To be more specific, there has to be some
mechanism so that a ranked list can be returned, with the most useful page at the
top of the list.

As you can tell, in the search engine we just presented, we store the number of
times the word appears on a page. Based on this number, our engine is able to assign

22 Introduction to the Semantic Web and Semantic Web Services

a weight to the page; the more often the word appears on the page, the more relevant
this page is.

The next step is to remember where the word appears. It could appear in the
title of the page, near the top of the page, in subheadings, in links, or in the metadata
tags (you now realize why metadata is important). Clearly, these different locations
of a given word signify the different levels of importance of the word. A much
more complex ranking system could be built on this consideration and, in fact, each
commercial search engine has a different way of assigning ranks to pages, the
design and implementation details of which are normally not available to the public.
Nevertheless, this is one of the reasons why a search using the same keyword on
different search engines will normally produce different lists (the pages are shown
in different orders).

As we are on the topic of page ranking and as we have already seen that metadata
could be useful even in the current Web world, let us take a closer look at the role
of metadata in these traditional search engines.

The key point to remember is that metadata can play a unique role in guiding
how the crawler should build the index table. For instance, we have learned that
Dublin Core (DC) elements, as one form of metadata, can be embedded into a given
page. One of these DC elements, subject, describes the topic of the page and,
typically, it is expressed as keywords or phrases that describe the subject or content
of the page. Assuming the words contained in this element are the important ones
on this page, the crawler may decide to assign greater weight to these words, which
would further change the rank of this page.

Another example is when the page owner decides to use formal classification
schemes in the Subject element, indicating the general topic of the page (Entertain-
ment, Business, Education, etc.). As it is also common for a given word to appear
several times on the same page and with a different meaning each time, a smart crawler,
on reaching this word, can use the classification information embedded in the metadata
to decide what might be the most likely meaning of the word. On the other hand, it
is also possible that the owner of the page added <meta> tags indicating the specific
topic covered by the page but, in fact, the page has nothing to do with that topic. The
result would be a wrong ranking number that might favor the page owner.

Metadata plays a vital role in search engine implementation: this will become
more obvious when we examine how the search engine works in the Semantic Web
environment. We will cover these interesting and exciting topics later. Let us continue
our study of the traditional search engines; there is still a lot more to learn.

Recall that the crawler in our search engine begins its travels on the Web by
following a seed URL. It turns out that this is the simplest task. In reality, you can
prepare a list of seeds for the crawler to start (and usually these seeds are all popular
sites), and you can even access a domain name server (DNS) to get a list of starting
URLs. Also, because the crawler will never be able to conquer the whole world, you
might also want to feed it a list of URLs that you do not want it to miss. Clearly,
there are many ways to improve the performance of a search engine.

Another topic is how the Web world is visited. Recall the way our crawler works:
it starts from the seed URL, finishes with the page content and identifies all the links
on this page, and follows the very first link to the next page. It then repeats the

Search Engines in Both Traditional and Semantic Web Environments 23

crawler starts from seed ...

_URL. . .URL .

FIGURE 2.6 Depth-first search conducted by the crawler.

whole process on the second page before moving to the third page, and so on. This
process is shown in Figure 2.6. The heavy arrow shows the movement of the crawler.
This type of search is called depth-first search.

The counterpart of depth-first search is breadth-first search. 1 leave it to the
readers to picture how a breadth-first search crawler works. Which one is better? I
will leave this also for you to answer. Once again, you can see how much interesting
work can be done in this area.

There are many other topics to discuss regarding search engines. Let us not go
into further details, as the reason we study it is to gain a better understanding of
how a search engine would work in a Semantic Web environment. Let us summarize
the key points about search engines under the traditional Web:

e The Web is made up of billions of Web pages.
* Most Web page have three different kinds of codes: HTML/XHTML tags
(required), CSS tags (optional), and JavaScript (optional).

24 Introduction to the Semantic Web and Semantic Web Services

* All these tags in a Web page just tell the machines how to display the
page; they do not tell the machines what they mean.

* When a crawler reaches a given page, it has no way to know what this
page is all about. In fact, it is not even able to tell whether the page is a
personal page or a corporate Web site.

* Thus, the crawler can only collect keywords, turning all search engines
into essentially keyword matchers.

2.2 SEARCH ENGINE FOR THE SEMANTIC WEB:
A HYPOTHETICAL EXAMPLE

In this section we are going to show a hypothetical search engine example in the
Semantic Web environment. The purpose is to let the reader understand precisely
what Semantic Web is and what value can be added by extending the current Web
to the Semantic Web.

Up to the time of this writing, the author has never encountered any real-world
example of semantic search engines, although it is quite a popular research topic in
the Semantic Web research community. Therefore, the example presented here can
be viewed as one possible way of constructing a Semantic Web search engine. Again,
the goal of examining such a hypothetical model is to gain a greater understanding
of what the Semantic Web is.

2.2.1 A HyprotHETICAL USAGE OF THE TRADITIONAL SEARCH
ENGINE

To construct a search example (and the example is also going to be used throughout
the book), let us start with my hobby, photography (which also happens to be a very
expensive hobby). Similar to many other amateur photographers, I started with film
cameras. With the advent of digital technology, digital cameras have become popular,
and I have decided to purchase one. To ensure that my money is spent wisely, I need
to do some homework first.

Most professional and amateur photographers use SLR (single lens reflex) cam-
eras as they give more control to the photographer. I am familiar with film SLRs,
but I have no idea about digital SLRs. So I decided to use a search engine to learn
something about digital SLR cameras.

Suppose the search engine I am using has an index table like the one shown in
Figure 2.7. By typing “SLR,” I should get the following list, assuming w1, w2,...,
are weights used by the engine and also, wl > w2 > ..., and so on:

* www.cheapCameras.com
* www.buyItHere.com
* many other links

I soon discover that pretty much all the top sites are vendor sites that sell SLR
cameras. They do not discuss the performance issues of digital SLRs, which is the

Search Engines in Both Traditional and Semantic Web Environments 25

gl R search engine
a query for “SLR” ———> 9
e N -
v
SLR : www . cheapCameras . com www . buy I'tHere.com many www . goodPhoto.com
! |weight: wy ™ lweight: wy ™ others —™weight: w;

FIGURE 2.7 SLR as a keyword in the index table.

topic that I am looking for. Only if I am patient enough will I be able to reach
www . goodPhoto.com, which is very useful and does address my concerns.

There is even more bad news. There are some really good sites I have missed.
For instance, www.digcamhelp.com talks about shutter speed and aperture in great
detail, but that particular page does not have the keyword “SLR” in it — it uses the
phrase single lens reflex instead of SLR. For similar reasons, I missed another good
site, www.ehow.com. This is indeed very frustrating; only after I try different key-
words can I hope to see these sites in the returned list.

Let us move on to search engines in the Semantic Web environment. We can
use this same hypothetical example to show how the Semantic Web can help tackle
these issues.

2.2.2 BUILDING A SEMANTIC WEB SEARCH ENGINE

In the world of the Semantic Web, the search engine is modified significantly, after
which a given search such as the foregoing example will return much more mean-
ingful results. Let us examine these changes one by one. Again, the goal is not to
build a Semantic Web search engine; rather, we will use this opportunity to gain a
greater understanding of the Semantic Web and what it has to offer.

Step 1: Build a common language.

The word semantics means meaning. Adding semantics into the Web, therefore,
means adding meaning to the Web. Before we can add meaning, the first step is to
figure out how to express meaning. This is done by constructing a vocabulary that
has meaning (knowledge) coded inside its terms.

26 Introduction to the Semantic Web and Semantic Web Services

Camera

N

Digital Film

SingleLensReflex \ /\
/ SLR Point-And-Shoot
SLR-Camera /

ShutterSpeed Aperture

is equivalent to: ——

has property:
FIGURE 2.8 A small vocabulary in the domain of photography.

Let us again take the photography example. In this domain-specific area, let us
assume there is a group of experts — mainly professional photographers who have
extensive domain knowledge — who get together, and work out a vocabulary set as
shown in Figure 2.8.

This extremely small vocabulary tells us the following:

Camera is a root concept in this vocabulary; we can also call it a root term or a root
class. Camera has two subconcepts: Digital camera or Film camera. Also, Dig—
ital camera can have two subclasses: SLR camera or Point-and-Shoot camera.

Note that the concept of class is the same as that used in the object-oriented
programming language world (Java or C++ developers should feel comfortable now).
At this point, we can see the meaning, or knowledge if you will, of the photography
domain being coded into this vocabulary. We can even add more knowledge into it
by saying more about this domain:

SingleLengthReflex camera is exactly the same class or concept as the SLR class,
and SLR-Camera is also exactly the same concept as the SLR class. Further, one can
use two different concepts to describe the performance of a SLR class: one is Shut-
terSpeed and the other is Aperture; or, one can say that SLR class has two
properties: ShutterSpeed and Aperture.

Now we are done with building the vocabulary. Clearly, it is domain specific
and includes a bunch of concepts (classes) with the relations defined among these
concepts. The benefits of building such a vocabulary are the following:

Search Engines in Both Traditional and Semantic Web Environments 27

e It is a standard way to express the meaning/knowledge of a specific
domain.

e It is a common understanding/language/meaning/knowledge shared by
different parties over the Web.

Pay attention to the fact that this vocabulary is built for a specific domain, and
in our example this domain is photography. Why does the vocabulary have to be
domain specific? The answer is simple: building a comprehensive vocabulary that
covers everything is just too ambitious; it is not even technically possible, given the
fact that a single concept may have different meanings in different domains. For
example, the concept of protein in the domain of biology or bioinformatics deals
primarily with the structure and characteristics of the protein, and researchers in this
domain are more interested in predicting the functions of a protein given its specific
structure, or vice versa. On the other hand, in the domain of human health, “protein”
may well be related to the protein content of different types of food, and the rela-
tionship between weight loss and protein consumption. It is just not possible to build
a universal vocabulary to encompass all the concepts and their interrelationships.

Let us go back to the topic of building a Semantic Web search engine. Given
that we have a way now to express the meanings of a given domain, what is the
next step?

Step 2: Markup the pages.

As previously mentioned, one of the benefits of having a vocabulary is that
different parties now have a common and shared understanding of the concepts in
the domain. In our hypothetical example, let us assume that the owner of www. good-
Photo.com has familiarized himself with this vocabulary and that he also agrees
with the meanings expressed in this vocabulary. For example, several of the pages
in www.goodPhoto.com do contain the keyword SLR, and these pages are not
concerned with the sale of SLR cameras; instead, they discuss different performance
measurements of SLR cameras such as shutter speed and aperture, concepts that are
expressed in the vocabulary.

Now the question is, how should the owner of www.goodPhoto.com explicitly
indicate that the word SLR in his pages has exactly the same semantics as the concept
SLR defined in the vocabulary? We will quickly see that to take advantage of the
Semantic Web, semantic similarities between the words on the given page and the
concepts defined in the vocabulary have to be explicitly expressed.

The solution is to markup the page. More specifically, to markup means to add
some extra data or information to the Web page to describe some specific characteristic
of the page. In our case, we need to add some data to explicitly indicate that the
semantics of some words contained in this page is defined in some common vocab-
ulary set. Now, the solution should remind us of one of the most important concepts
in the Web world: metadata. The extra data used to express semantic similarity is
indeed metadata. Therefore, to markup a page is to add some metadata to it.

Recall that metadata should be added to the page by following some predefined
metadata schema, such as Dublin Core, which is in fact the only schema we know

28 Introduction to the Semantic Web and Semantic Web Services

now. However, Dublin Core elements seem to be fairly limited when we attempt to
use them to accomplish what we want here.

Later on in this book, we will see some languages with much stronger descriptive
power that have already been invented to express the semantics and knowledge for
any possible domain; in fact, DC schema is absorbed by these languages. We will also
see that these languages can easily accomplish what we need to do here. For now,
without worrying too much about these technical details, let us just assume the markup
process can be implemented by taking the two steps described in the following text.

First, the page owner of www. goodPhoto.com creates a special file by using one
of the description languages (we will see these languages in later chapters). This file
conveys the following information:

The word SLR used in these pages has the same semantics as that defined in the
common vocabulary file.

The page owner then saves this file somewhere on the Web, most likely on the Web
server hosting www.goodPhoto.com.

Second, the pages have to be marked up: each page that has the word SLR has
to be connected to the preceding description file. This is done by adding a <1ink>
tag in the <head> section of the page, as shown in List 2.1.

LIST 2.1
Connecting the Web Page to the Special File

<HTML>

<HEAD>
<TITLE>the performance of a digital camera</TITLE>
<LINK rel="help" href=URL of the_special_ file>
...other stuff

</HEAD>

...the rest of the document...

Note that the “rel” attribute has help as its value, meaning the link specified
here refers to a document offering more information, which seems to fit our needs
well. At the time of this writing, there is no standard governing the connection of a
document page to its semantic markup file; using the <link> tag is currently an
acceptable and popular approach.

The owner has now finished the markup work on the pages of www.good-
Photo.com. Let us now assume the owners of the following two sites have also
marked up their pages:

www.digcamhelp.com
www.ehow.com

The reason why the pages on www.digcamhelp.com never show up in the index
table in a traditional search engine is because the particular page useful to us does

Search Engines in Both Traditional and Semantic Web Environments 29

not contain the word SLR, despite the fact that it gives an excellent summary of
shutter speed and aperture, because of which it is still quite useful to us. Similarly,
to markup this page, the owner of this site has created the special file (using this
much richer language that we will come to know in later chapters) to express the
following fact:

The semantics of the words shutter speed on this page is the same as that defined in
the common vocabulary; the semantics of the word aperture is the same as that defined
in the common vocabulary.

The linking procedure is done similarly by the owner. Now for the pages on
www . ehow . com; they do not show up in the returned list when using the traditional
search engine because these pages use “single lens reflex” instead of “SLR.” Noting
that the vocabulary does include a concept “singleLensReflex,” the owner there-
fore expresses the following fact in the special file:

The single lens reflex camera discussed on this page is an instance of the class
SingleLensReflex defined in the common vocabulary.

The linking process is again implemented by using the <1ink> tag by the owner.
What about those sites that are mainly selling the SLR cameras? There will be no
markup happening on these sites at all. The reason is simple: the semantics on these
sites is about selling, which is quite different from the semantics defined by the
common vocabulary; therefore, the owners of those sites will never markup their
pages against the common vocabulary.

Step 3: A much smarter crawler.

Now that the related pages have been marked up, it is up to the crawler to collect
this information while crawling. It can now be viewed as a smart agent. Let us take
a closer look at how it works.

Let us use the same example. At some point during its journey on the Web, the
crawler reaches a page under www.cheapcameras.com. Just as it usually does, it
downloads this page and starts to index the words on it. The first thing the crawler
notices is that this page does not link to any special file. This implies that this page
has not been marked up for any special semantics. When the crawler finally hits the
word SLR, it adds the word to the index table; the document structure record now
clearly shows no markup has been done on this page. The current index table is
shown in Figure 2.9.

For all the pages meant mainly for selling the cameras, the same process is
repeated by the crawler: when it hits the word SLR, it simply locates it in the index
table, and adds the corresponding document record, as shown in Figure 2.9.

Finally, the crawler reaches a page belonging to www.goodPhoto.com. The first
thing the crawler sees is that this page links to another file (the markup file), which
specifies that the word SLR used on this page has the same semantics as that defined

30 Introduction to the Semantic Web and Semantic Web Services

SLR

www . cheapCameras .com
weight: wl
markupURL: none

FIGURE 2.9 Index table including markup information.

in the common vocabulary. Immediately, the crawler accesses the URL of this
markup file and downloads it to its memory. At this point, it will perform the
following two important steps:

e Parse the markup file: After parsing the markup file, the crawler knows
that the word SLR used on the current Web page has the same semantics
as that defined in a common vocabulary file; let us name this common
vocabulary mySimpleCamera.owl. You will understand why we use owl
as part of the filename when you finish reading the later chapters.

¢ Download mySimpleCamera.owl: The crawler then downloads mySimple-
Camera.owl into its memory for later reference.

After finishing these two steps, the crawler continues its normal work: parses
the page into words and adds each word one by one into the index table. When it
reaches the word SLR, it will recall that it has been described in the markup file,
and its semantically equivalent concept is defined in mySimpleCamera.owl. The
crawler then locates the word SLR in the index table and updates the table as shown
in Figure 2.10.

Interesting things happen when the crawler reaches the pages on www.digcam-
help.com The moment it reaches this page, the crawler will realize that this page
has been marked up, and it will download the markup file. Because the markup file
contains the words shutter speed and aperture, the crawler will remember them. It
will also download mySimpleCamera.owl. After these steps, the crawler carries on
with the normal processing of the page. During this process, when it hits any one
of these keywords, i.e., shutter, speed, or aperture, it infers the following:

¢ These words have the same semantics as that defined in mySimpleCamera
.owl.

Search Engines in Both Traditional and Semantic Web Environments 31

SLR www . cheapCameras..com - www . buy I tHere.com I - www .goodPhoto.net
weight: wl weight: w2 weight: w;
markupURL :none markupURL :none markupURL :URL(mySimpleCamera.owl)

FIGURE 2.10 The index table after www.goodPhoto.net is added.

* In mySimpleCamera.owl, ShutterSpeed and Aperture are properties
of the class SLR.

* These properties are exclusively defined to describe the properties of class
SLR, not anything else.

e Therefore, the current document must be a document about SLR.

As you can tell, these are quite impressive inferences. It is also encouraging to
realize that this can be easily done by using the inference engine associated with
the description languages we have mentioned earlier. As the markup file the crawler
is reading is created by using one of these description languages, the inference engine
can certainly be accessed by the crawler. It is therefore easy to see why the crawler
is so smart. You will understand the description languages and their inference engines
when you finish reading the chapters to come.

The end result is, even though the word SLR never even appears on the page,
the crawler still adds one entry into the index table under the word SLR (index key),
and the added entry points to this page under www.digcamhelp.com. This is indeed
quite impressive, and is made possible by having mySimpleCamera.owl defined, a
markup file created and linked to the page. The current index table is shown in
Figure 2.11.

It is worth emphasizing once more: using the search engine under the traditional
Web, this page will never be included into the document lists corresponding to the
index key SLR; therefore, any search based on SLR will never retrieve this page,
though it is an excellent page about SLR cameras.

As the final example of the crawler’s work, let us take a look at what happens
when the crawler visits www.ehow.com. The crawler again realizes that this page
has been marked up as a Semantic Web page and it therefore pays more attention
to it. The result is the following inference process:

32 Introduction to the Semantic Web and Semantic Web Services

SLR www .cheapCameras . com - www . buy I'tHere.com R - www . goodPhoto.com
weight: wl weight: w2 weight: w;
markupURL :none markupURL:none markupURL :URL(mySimpleCamera.owl)
'
www.digcamhelp.com
weight: wj
markupURL :URL(mySimpleCamera.owl)

FIGURE 2.11 Page www.digcamhelp.com is included in the index table under SLR even
though it does not contain the word SLR.

e The markup file says, “the single lens reflex camera discussed on this
page is an instance of the class SingleLensReflex defined in mySim-
pleCamera.owl.”

* Therefore, this page is about SingleLensReflex cameras.

* According to mySimpleCamera.owl, SingleLensReflex as a concept is
equivalent to the SLR concept.

» Therefore, this page is also about SLR.

The crawler then adds this page as a document entry into the index table under
the index key SLR, even though this page does not contain the word SLR. Again, as
a comparison, if we are using a traditional search engine and search the Web by
using SLR, we will never retrieve this page.

For our hypothetical example, we have finished discussing the crawler. Let us
move on to see what happens when the real search begins: how does the search
identify the right pages?

2.2.3 USING THE SEMANTIC WEB SEARCH ENGINE

When it comes to using our hypothetical Semantic Web search engine, you can
utilize it either as an ordinary engine or as a semantic search engine. To use it as
an ordinary engine, you do nothing special: enter the keyword(s) to start the search.
For instance, we can still search for the keyword SLR. Now, as we did not tell the
engine that we are doing a semantic search, the engine just ignores all the semantic
matching power (more on this later) it has and returns the documents in which the
word SLR has made an appearance.

Recall the same search we conducted using the traditional search engine. The
fact is, even when this new engine is used as a traditional one, it still returns a list

Search Engines in Both Traditional and Semantic Web Environments 33

that is longer than the list returned by the traditional engine. The reason has been
discussed in the previous section: the crawler has added several documents that do
not contain SLR as a keyword, and these documents are added as the crawler is able
to make inferences based on the page markup metadata and the referenced mySim-
pleCamera.owl file. Therefore, if we use the new engine in the old way, we will
have even more pages to sift through.

Now, if we would like to use this new engine as a Semantic Web search engine,
we should follow the following steps.

Step 1: Select your semantics. After accepting the keyword we entered (in
this case, SLR), the engine will first scan all the available common vocab-
ularies and find all the ones that have the concept SLR defined in them.
You can imagine that we are not the only ones interested in building
Semantic Web search engines, so it is quite possible that there are other
common vocabulary sets. The engine then presents these owl files, and it
is up to us to tell the engine that the semantics (meaning) of the keyword
SLR is the same as that defined in this vocabulary: mySimpleCamera.owl.

Step 2: Search the index table and return the results. The engine then goes
into the index table to find the candidate pages. It does this by retrieving
the document list indexed by the keyword sLR. It then iterates over this list
and for each document in the list, it checks the markupURL field and does
the following:

1. If this field points to NULL, discard this document. This field will point
to a valid URL if the document is indeed marked up as a Semantic
Web page. If this field points to NULL, then no semantics has ever been
added to this page.

2. If the field is not NULL and if it does not point to mySimpleCamera.owl,
then discard this document. Clearly, it could be true that the word SLR
is also defined in some other common vocabulary and some owners
have marked up their pages to indicate the semantics of the word SLR
contained in their documents to be the same as that defined in that
particular vocabulary. For us, this simply indicates that the same word
can have different meanings. For the search engine, this simply means,
“sorry, this page has the keyword you entered, but its meaning is
different from what you are looking for, as the semantics of the word
in this document is defined in a different vocabulary.”

3. If the markupURL field is not NULL and it does point to mySimpleCamera
.owl, then include this document in the candidate set. This part is
obvious. For our hypothetical example, the following three sites will
be collected (note that all the sites selling cameras are not included
this time!):

® www.goodPhoto.com
* www.digcamhelp.com

* www.ehow.com

34 Introduction to the Semantic Web and Semantic Web Services

Once the engine finishes scanning the index table, it has a candidate set (as
described earlier). Now, the candidate set is sorted by using the weighting schema;
in other words, the engine now tries to sort the documents in the set and list the most
relevant ones on the top. Once this step is finished, the result is returned to the user.

This time, it does get better: all the camera-selling sites are gone, and the results
are all related to what we are looking for.

2.3 FURTHER CONSIDERATIONS

You have seen one example of a Semantic Web search engine; this is just one possible
way of constructing it, and the purpose is to show you how the Semantic Web can
help a search engine achieve better results. It is not meant to offer a practical solution
to the challenge of building a Semantic Web search engine. Building a real Semantic
Web search engine will require a lot more work, and the following text describes
some issues that need to be considered when building such an engine.

2.3.1 WeB PAGE MARKUP PROBLEM

One obvious issue is the markup of the Web pages. In our hypothetical example, we
assume the markup work is done by each individual site owner. In reality, however,
the site owner may not be motivated to do so. For instance, he or she could be
waiting for a killer smart agent application to show up. The trouble is, the killer
application depends on the markup of the Web page. This seems to be another
example of the chicken-and-egg problem: without this killer application, no one will
be motivated enough to implement the markup; however, without the markup, the
killer application is simply not possible. How to solve this problem? Hopefully, W3C
can find the resources to implement an application to convince the public.

Another solution to handle this is to do automatic markup by running a smart
crawler — this crawler is different from the search engine crawler in that its task is
not to build an index table but to automatically markup the Web pages it has visited.
At the current stage, this still seems quite hard to accomplish given that Web pages
are not machine readable.

2.3.2 “CoMMON VOCABULARY” PROBLEM

When creating the example search engine, we saw the importance of the “common
vocabulary” (mySimpleCamera.owl in our example). It is where all the semantics
and knowledge are recorded for use by the crawler later on. But how to create these
files? Also, we have seen that these files are normally domain specific; therefore,
how many domains should we have? Who is qualified to be a domain expert?

There is more bad news. One of the difficulties is that for a single domain, there
could exist several of these files, each of which tries to capture the common terminol-
ogies and their relations in the given domain. Then we have the problem of overlapping
semantics. How to match a given vocabulary to another in order to decide if they are
equivalent? Under what circumstances can we interchange two different concepts, each
defined in separate but equivalent vocabularies? These questions have to be solved
before a real Semantic Web search engine can be constructed.

Search Engines in Both Traditional and Semantic Web Environments 35

2.3.3 QUERY-BUILDING PROBLEM

Another important issue is how to build the query. In our simple example, we
assumed the search engine would present the user the vocabulary files and the user
would decide which file defines the semantics that he or she prefers. How good is
this solution? What if the user is not quite clear about the semantics of the concept
he or she is searching for? What if the concept shows up in several definition files
and each of them looks fairly close?

You see all these issues, and they are not all. Among the ones we have not
mentioned, there are the issues of performance and scalability, which are always
concerns to us. For instance, from the example we see that quite often the crawler
needs to do some inference work about the facts it is collecting; this is time con-
suming and the performance and scalability issues cannot be ignored.

We now return to our topic. Again, a Semantic Web search engine is presented
here just so that you can understand more about the Semantic Web, and how it can
help us. The purpose is not to make a search engine expert out of you, at least not
at this point.

So, do you have a better understanding of the Semantic Web now?

2.4 THE SEMANTIC WEB: A SUMMARY

In this chapter, two search engines were described for comparison purposes. One of
these engines was constructed under the traditional Web environment and the other
under the Semantic Web environment. The goal of the exercise was to gain a better
understanding of the Semantic Web by understanding how the Semantic Web can
help search engines deliver better search results. Let us briefly summarize what we
have learned:

* In the traditional Web environment, each Web page only provides infor-
mation for computers to display the page, not to understand it; the page
is solely intended for human eyes.

* Therefore, traditional search engines are forced to do keyword matching
only. Without any semantics embedded in the page, the user certainly gets
quite a lot of irrelevant results.

To solve this problem, we can extend the traditional Web by adding semantic
data to it. Here is how we do it:

e We can construct a vocabulary set that contains (all) the important words
(concepts, classes) for a given domain, and the semantics and knowledge
are coded into this set; more importantly, this set has to be constructed
using some structured data.

* We then markup a Web page by adding a pointer in its metadata section.
This pointer points to the appropriate vocabulary set; this is how we add
semantics to each page.

36 Introduction to the Semantic Web and Semantic Web Services

* When visiting a Web page, a smart agent (or crawler in the search engine
example) is able to see the link from its metadata section and follow it to
retrieve the vocabulary set.

* As this set is constructed using structured data, the agent is able to
understand the vocabulary set. Also, as the given page is linked to this
set, the agent is able to understand what this page is all about.

Now, based on this understanding, we can frame a better definition of the
Semantic Web:

The Semantic Web is an extension of the current Web. It is constructed by linking
current Web pages to a structured data set that indicates the semantics of this linked
page. A smart agent, which is able to understand this structure data set, will then be
able to conduct intelligent actions and make educated decisions on a global scale.

2.5 WHAT IS THE KEY TO SEMANTIC WEB
IMPLEMENTATION?

Based on our latest definition of the Semantic Web, and also based on our experience
with search engines in both environments, we realize that the key to the implemen-
tation of the Semantic Web is this structured data set. Once again, let us emphasize
this fact: a structured data set implies that it is machine readable. In our previous
engine examples, we called it the common vocabulary file.

How to construct such a structured data set? How to markup a given page using
this data set? To answer these and other related questions, we need to get into the
details of Semantic Web technology. It is the topic of Part 2 of this book.

A sneak preview here: a commonly accepted name for this common vocabulary
file is ontology, and RDF, RDFS, and OWL are all description languages that you
can use to construct such an ontology.

Part 2

The Nuts and Bolts of Semantic
Web Technology

In Part 1 we have spent quite some time discussing what the Semantic Web is, and
we have examined two search engines in great detail in order to gain a better and
more concrete understanding of the Semantic Web and the value it can add. We hope
this goal is well accomplished, and you are now motivated and well prepared to dive
into the technical world of the Semantic Web.

The chapters in this part will examine the nuts and bolts under the surface of the
Semantic Web. We will start with RDF and RDEFES, proceed to ontologies and ontology
languages such as OWL, and also discuss some available tools you can use as a
Semantic Web developer. We will use many examples to demystify these topics. After
finishing these chapters, you should be well equipped to begin a much more interesting
and challenging journey into the world of the Semantic Web on your own.

