

39

3

The Building Block
of the Semantic Web:
RDF

3.1 OVERVIEW: WHAT IS RDF?

In the first two chapters, we established an initial understanding of the Semantic Web.
A typical Web page in the Semantic Web world looks like the one shown in Figure 3.1.

In Figure 3.1, the markup document is the special file we mentioned repeatedly
in Chapter 2. It asserts the following fact: the semantics of the term SLR used on
this page is the same as that defined in the

mySimpleCamera.owl

 vocabulary. This
file is indeed quite special; its existence has turned the crawler into a smart agent.
When the crawler reaches this page, it follows the link on it to locate this markup
file and, furthermore, it is able to “understand” it. With the help of the

mySimpleCamera

.owl

 file (pointed to by a link in the markup file), the crawler is finally able to
understand what this whole page is about. In fact, in Chapter 2 we saw some fairly
complex inferences made by the crawler with the help of the markup file.

Obviously, this special file is the key; this file, when understood by the computer
(i.e., the agent), triggers the rest of the chain of inferences and understanding. It is
the starting point for making the vision of the Semantic Web a reality. Therefore,
the two key questions we will have to address are as follows: First, what is this
special file? Second, how is it created?

The answer to the first question is simple: this special file can also be called a
markup file. It is a file that describes some facts about the underlying Web page.
Does this remind you of metadata? Yes, it defines metadata about the Web page; it
is a metadata file. To some extent, the Semantic Web is all about metadata.

FIGURE 3.1

A Web page in the Semantic Web environment.

www.goodPhoto.com

<head>
 …
 <link>
 …
</head>

<h1>SLR cameras</h1>
…

SLR=URL():SLR

“markup”

mySimpleCamera.owl

C9330_C003.fm Page 39 Thursday, April 12, 2007 8:39 AM

40

Introduction to the Semantic Web and Semantic Web Services

The answer to the second question leads to the concept of RDF (Resource
Description Framework); to create a markup file, one can use RDF language; that
is why we need RDF. This entire chapter concentrates on RDF.

We already know how important metadata is to the Semantic Web, and that RDF
is the language we use to construct these metadata files; we therefore realize the
importance of RDF. Let us now summarize the key points as follows:

• RDF is the basic building block for supporting the Semantic Web.
• RDF is to the Semantic Web what HTML has been to the Web.

Now that we know how RDF fits into the whole picture, let us take a look at
what is RDF. RDF is an XML-based language for describing information contained
in a Web resource. A Web resource can be a Web page, an entire Web site, or any
item on the Web that contains information in some form. In this chapter, we will
learn the following facts about RDF:

• RDF is a language recommended by W3C [13], and it is all about metadata.
• RDF is capable of describing any fact (resource) independent of any domain.
• RDF provides a basis for

coding

,

exchanging

, and

reusing

 structured
metadata.

• RDF is structured; i.e., it is machine-understandable. Machines can do
useful operations with the knowledge expressed in RDF.

• RDF allows

interoperability

 among applications exchanging

machine-
understandable

 information on the Web.

After reading this chapter, all the preceding facts will become clear to you. I
suggest you review these points after finishing this chapter; they will start to make
sense. If not, you will need to review this chapter again, because RDF is indeed the
building block of the Semantic Web.

3.2 THE BASIC ELEMENTS OF RDF

There are several basic elements you need to know about RDF. They are the pre-
requisites to learning RDF. Let us discuss them first.

3.2.1 R

ESOURCE

The first key element is the resource. RDF is a standard for metadata; i.e., it offers
a standard way of specifying data about something. This something can be anything,
and in the RDF world we call this something,

resource

.
A resource therefore is anything that is being described by RDF expressions. It can

be a Web page, part of a Web page (a word on a page, for instance), the whole Web site,
or even a real-world object, such as a book, a human being, a dog — it can be anything.

A resource is identified by a uniform resource identifier (URI), and this URI is
used as the name of the resource. Why do we have to use a URI as the name of the
resource? The reason is summarized in the following rule:

C9330_C003.fm Page 40 Thursday, April 12, 2007 8:39 AM

The Building Block of the Semantic Web

41

Rule #1: The name of a resource must be global. In other words, if you have a doubt
that someone else might also use the same name to refer to something else, then you
cannot use that name.

Think about this. If you and someone else happen to use the same name to
identify two different resources, then the same name could have two different
meanings. This semantic ambiguity is exactly what we want to avoid in the world
of the Semantic Web.

URI is not something new. For example, URL (uniform resource locator) is a
particular type of URI used in the Web world, such as

www.w3c.org

. When used to
identify resources, URIs can take the same format as the URLs. The main reason is
that the domain name used in the URL is guaranteed to be unique; therefore, the
uniqueness of the resource is guaranteed — here, the domain-name part is used just
as a namespace. In other words, there may or may not be an actual Web site at that
address, and it does not matter at all. What matters is that the resource is uniquely
identified globally.

Here is an example. The following URI uniquely identifies a resource:

http://www.yuchen.net/photography/SLR#Nikon-D70

Let us understand more about this resource:

1. This resource is a real-world object, i.e., a Nikon D70 camera; it is a
single lens reflex (SLR) camera.

2. URL “

http://www.yuchen.net/photography/SLR

” is used as the first
part of the URI. More precisely, it is used as a namespace to guarantee
that the underlying resource is uniquely identified; this URL may or may
not exist.

3. At the end of the namespace, “

#

” is used as the fragment identifier
symbol to separate the namespace from the local resource name, i.e.,
Nikon-D70.

4. Now the namespace + “

#

” + localResourceName gives us the final URI
for the resource; it is globally named.

Let us move on to the next basic element, property.

3.2.2 P

ROPERTY

Property

 is a resource that has a name and can be used as a property; i.e., it can be
used to describe some specific aspect, characteristic, attribute, or relation of the given
resource. As we have already studied the concept of resource, it is not at all hard to
understand property. The following is an example of a property:

http://www.yuchen.net/photography/SLR#weight

This property describes the weight of the D70 camera — you certainly do not
want to carry something very heavy when you prefer to have your camera with you
all the time to ensure you do not miss those important moments!

C9330_C003.fm Page 41 Thursday, April 12, 2007 8:39 AM

42

Introduction to the Semantic Web and Semantic Web Services

3.2.3 S

TATEMENT

An RDF statement is used to describe properties of resources. It has the following format:

resource (subject) + property (predicate) + property value (object)

The property value can be a string literal or a resource. Therefore, in general,
an RDF statement indicates that a resource (the subject) is linked to another resource
(the object) via an arc labeled by a relation (the predicate). It can be interpreted as
follows:

<subject> has a property <predicate>, whose value is <object>

For example:

http://www.yuchen.net/photography/SLR#Nikon-D70 has a
http://www.yuchen.net/photography/SLR#weight whose value
is 1.4 lb.

This is certainly clear, but the drawback is that it is too long. Let us define the
following namespace:

xmlns:mySLR="http://www.yuchen.net/photography/SLR#"

The statement can be rewritten in a much shorter form:

mySLR:Nikon-D70 has a mySLR:weight whose value is 1.4 lb.

As you might have already noticed, any RDF statement can be expressed as a triple
(presented in a table format). Before we show an example, let us introduce rule #2 first:

Rule #2: Knowledge (or information) is expressed as a statement in the form of subject,
predicate, and object, and this order should never be changed.

For example, following rule 2, the preceding statement can be expressed in the
triple format, as shown in Table 3.1. This can also be expressed in a graph model,
as shown in Figure 3.2.

Up to this point, we have covered the basic components of RDF, and the rest
are RDF syntax issues. It is also interesting to see, from the preceding examples,
how knowledge is coded in the RDF statement. In fact, just by using these triples,
the computer has already gained much more inference power than you might realize.
We will show you a small example before we get into the syntax details.

TABLE 3.1
An RDF Triple Expressed in a Table Format

Subject Predicate Object

mySLR:Nikon-D70 mySLR:weight 1.4 lb

C9330_C003.fm Page 42 Thursday, April 12, 2007 8:39 AM

The Building Block of the Semantic Web

43

3.3 RDF TRIPLES: KNOWLEDGE THAT MACHINES CAN USE

Let us take a detour here, just to see how RDF statements can be used to express
knowledge, and based on these simple statements, what kind of inference power a
machine can have.

Let us assume that we have the following statements (again, use

mySLR

namespace), as shown in Table 3.2. Our first impression is that Table 3.2 looks like
a table in a database. In fact, RDF triples can be stored in a database file. Now, let
us ask the machine the following question:

What properties did we define in order to describe Nikon D70?

We can express the question using the following RDF format:

question.subject = mySLR:Nikon-D70
question.predicate = mySLR:*;

Note that

mySLR:*

 is used as a wild card. The pseudocode in List 3.1 can help
the computer answer the question. This code will present the following answer:

mySLR:weight
mySLR:pixel

FIGURE 3.2

RDF graph model.

TABLE 3.2
A Set of RDF Statements

Subject Predicate Object

mySLR:Nikon-D70 mySLR:weight 1.4 lb

mySLR:Nikon-D70 mySLR:pixel 6.1 M

mySLR:Nikon-D50 mySLR:weight 1.3 lb

http://www.yuchen.net/photography/Camera#weight

http://www.yuchen.net/rdf/NikonD70.rdf#
Nikon-D70

1.4 lbs

Legend:

 Resource –

Literal String –

C9330_C003.fm Page 43 Thursday, April 12, 2007 8:39 AM

44

Introduction to the Semantic Web and Semantic Web Services

This means that we have defined

mySLR:weight

 and

mySLR:pixel

 properties for
Nikon D70. Clearly, based on the knowledge presented in the RDF statements (Table
3.2), the machine can indeed perform some useful work for us.

In fact, you can construct more interesting examples than the one shown here
by adding more RDF statements and more complex predicates and objects. We will
see more examples along these lines in subsequent chapters.

3.4 A CLOSER LOOK AT RDF

The fact that RDF is the basic building block of the Semantic Web demands a more
detailed study of RDF itself. In fact, to understand the rest of the book, one needs
a solid grasp of RDF. In this section, we will first study basic RDF constructs,
including the fundamental syntax and most of the frequently used words from the
RDF vocabulary. This will not only teach you RDF, but will also clarify most of
the common confusions about RDF. At the end of this section, a summary of the
fundamental rules in the world of RDF will be presented.

3.4.1 B

ASIC

 S

YNTAX

AND

 E

XAMPLES

Now, we will discuss RDF syntax. Here, we have both good news and bad news.

LIST 3.1
Pseudocode Used by the Computer to Draw Inferences Based on Table 3.2

// format my question

question.subject = mySLR:Nikon-D70

question.predicate = mySLR:*;

// read all the RDF statements and store them in some array

rdfStatement[0].subject = mySLR:Nikon-D70;

rdfStatement[0].predicate = mySLR:weight;

rdfStatement[1].subject = mySLR:Nikon-D70;

rdfStatement[1].predicate = mySLR:pixel;

rdfStatement[2].subject = mySLR:Nikon-D50;

rdfStatement[2].predicate = mySLR:weight;

// answer the question!

foreach s in rdfStatement[] {

 if ((s.subject==question.subject || question.subject=='*') &&

 (s.predicate==question.predicate || question.predicate ==

 '*'))

 {

 System.out.println(s.predicate.toString());

 }

};

C9330_C003.fm Page 44 Thursday, April 12, 2007 8:39 AM

The Building Block of the Semantic Web

45

Let us consider the bad news first. This is, after all, a new language to be learned,
and it does take a while to get used to it. Indeed, there are some issues associated
with the syntax that can be very confusing before you completely understand them.
In this section, one of the goals is to clarify the confusing issues by walking you
through several examples.

Now for the good news: First, after you have read this section, you would be
very comfortable with RDF documents and literature about RDF, because we are
going to cover all the confusing topics in RDF. Second, RDF does not have a large
vocabulary set at all. In fact, it is extremely small. More precisely, the RDF vocab-
ulary consists of the following names:

• Syntax names:

RDF

,

Description

,

ID

,

about

,

parseType

,

resource

,

li

,

nodeID

,

datatype.

• Class names:

Seq

,

Bag

,

Alt

,

Statement

,

Property

,

XMLLiteral

,

List

.
• Property names:

subject

,

predicate

,

object

,

type

,

value

,

first

,

rest_

n

 (where

n is a decimal integer greater than zero with no leading
zeros).

• Resource names: nil.

Keep these names in mind, and once we reach the end of this section you will
see how many of these names we have covered. Let us proceed.

Refer back to our earlier example, “Nikon-D70 has a weight of value 1.4 lb.”
For the RDF version of this fact, see List 3.2.

This simple document describes a resource (Nikon-D70 camera) in RDF format.
Let us understand it line by line.

The first line says this document is in XML format (I assume you are comfortable
with XML). The second line further indicates that this document is an RDF document
by using the RDF keyword RDF. It also shows the RDF namespace URI reference,
i.e., http://www.w3.org/1999/02/22-rdf-syntax-ns#, and rdf is used as a
shortcut to represent this namespace. After establishing this namespace and its short-
cut, a name from this namespace will be expressed as rdf:name, using the shortcut
as the prefix. For instance, rdf:RDF uses the RDF name from the RDF vocabulary,
and it has an RDF URI reference constructed by the concatenation of RDF namespace,

LIST 3.2
First Example of an RDF Document

1: <?xml version="1.0"?>

2: <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns="http://www.yuchen.net/photography/Camera#">

3: <SLR rdf:ID="Nikon-D70">

4: <weight>1.4 lbs</weight>

5: </SLR>

6: </rdf:RDF>

C9330_C003.fm Page 45 Thursday, April 12, 2007 8:39 AM

46 Introduction to the Semantic Web and Semantic Web Services

URI reference, and name; i.e., rdf:RDF has the RDF URI reference http://www.w3
.org/1999/02/22-rdf-syntax-ns#RDF.

The second line defines another namespace, a namespace created by us, namely,
http://www.yuchen.net/photography/Camera#, and it is used as the default
namespace. Therefore, any name that does not have a prefix in this document is
assumed to be in this namespace. For example, the keyword SLR on the third line
is defined in this namespace.

The third line uses the RDF keyword rdf:ID to identify the resource being
described by this RDF document; this resource is called Nikon-D70. The term SLR
defines the class (type) of this resource. What exactly is an SLR? We do not know
yet, but we do know that it is defined in the default namespace. We can interpret
the third line as follows:

The resource being described in this document is identified as Nikon-D70; it is an
instance of the class SLR, which is further defined in the namespace
http://www.yuchen.net/photography/Camera.

The fourth line specifies that the SLR class has one property, whose name is
weight, and for this resource (Nikon-D70), the value of this property is 1.4 lb.

The rest of the document is easy. Now, to put all these together, we can interpret
this RDF code as follows:

The RDF document describes a resource whose name is Nikon-D70; it is an instance
of the class SLR, and its weight is 1.4 lb.

Now, let us put the aforementioned RDF document into the subject-predicate-
object format:

subject: http://www.yuchen.net/photography/cameras#Nikon-D70
predicate: http://www.yuchen.net/photography/Camera#weight
object: 1.4 lb

This is what we would expect to see, but it is wrong; it could be one of the
reasons why RDF appears very confusing at the beginning. In fact, RDF/XML
prescribes that the statement look like this:

subject: http://www.yuchen.net/rdf/NikonD70.rdf#Nikon-D70
predicate: http://www.yuchen.net/photography/Camera#weight
object: 1.4 lb

The URL http://www.yuchen.net/rdf/NikonD70.rdf is in fact the location
of this RDF document. How can this URL become part of the subject? This is
because the complete URI of the subject is obtained by concatenating the following
three pieces together:

Up to this point, we have covered the following RDF vocabulary: rdf:RDF,
rdf:ID.

C9330_C003.fm Page 46 Thursday, April 12, 2007 8:39 AM

The Building Block of the Semantic Web 47

in-scope base URI + "#" + rdf:ID value

Because the in-scope base URI is not explicitly stated in the RDF document, it
is provided by the parser based on the location of the file in which it was parsed.
In this example, http://www.yuchen.net/rdf/NikonD70.rdf is the location of
the document; therefore, the URI of the subject is constructed as follows:
http://www.yuchen.net/rdf/NikonD70.rdf#Nikon-D70.

Clearly, using rdf:ID results in a relative URI for the subject; the URI changes
if the location of the RDF document changes. This seems to contradict the very
meaning of URI — the unique and global identifier of a resource. How can it change
based on the location of some file, then? In most cases, we have an absolute URI
in mind for the resources described in the file.

The best solution to this problem is to use rdf:about instead of rdf:ID. Let
us discuss this solution later, because quite often you may see people using xml:base
to solve this problem. So, let us take a look at this solution first, just to prepare you
for further literature.

More specifically, by placing the xml:base attribute in the RDF document, we
will be able to control which base is used to resolve the rdf:ID value; the subject of
the statement will then be fixed and it will be generated using the following mechanism:

xml:base + "#" + rdf:ID value

List 3.3 shows the new RDF document.

As we have mentioned earlier, however, rdf:about should always be used as
the best solution. It provides an absolute URI for the resource, and that URI is taken
verbatim as the subject; this certainly avoids all possible confusions. List 3.4 shows
the document when rdf:about is used.

LIST 3.3
RDF Document Using xml:base Attribute

1: <?xml version="1.0"?>

2: <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns="http://www.yuchen.net/photography/Camera#"

 xml:base="http://www.yuchen.net/rdf/NikonD70.rdf">

3: <SLR rdf:ID="Nikon-D70">

4: <weight>1.4 lbs</weight>

5: </SLR>

6: </rdf:RDF>

LIST 3.4
RDF Document Using rdf:about

1: <?xml version="1.0"?>

2: <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns="http://www.yuchen.net/photography/Camera#">

C9330_C003.fm Page 47 Thursday, April 12, 2007 8:39 AM

48 Introduction to the Semantic Web and Semantic Web Services

Next we will cover rdf:type, rdf:Description, and rdf:resource.
In our RDF document, we have described a resource called Nikon-D70, and it

is an instance of the class SLR. This relationship is expressed by using SLR in the
document together with the namespace where SLR is defined. Take a look at Figure
3.2; obviously, it fails to express the relationship. A revised version should appear
as in Figure 3.3.

As shown in Figure 3.3, for the subject node Nikon-D70 we need a has-type
predicate to indicate that the underlying resource is an instance of some class. It is not
hard to imagine that this requirement should be very common for RDF graph models.

In the RDF vocabulary, rdf:type exists for this reason. It is used to describe
resources as instances of specific types or classes. In other words, subject nodes can
have rdf:type predicates coming out from them, indicating that they are instances
of some type. These nodes are conventionally called typed nodes in a graph, or typed
node elements in RDF documents. Using rdf:type, Figure 3.3 should look as shown
in Figure 3.4.

3: <SLR rdf:about="http://www.yuchen.net/rdf/NikonD70.rdf#Nikon-
 D70">

4: <weight>1.4 lbs</weight>

5: </SLR>

6: </rdf:RDF>

Up to this point, we have covered the following RDF vocabulary: rdf:RDF,
rdf:ID, rdf:about.

FIGURE 3.3 A revised RDF graph model.

http://www.yuchen.net/photography/Camera#SLR

has-type(?)

http://www.yuchen.net/photography/Camera#weight

http://www.yuchen.net/rdf/NikonD70.rdf#
Nikon-D70

1.4 lbs

Legend:

 Resource –

Literal String –

C9330_C003.fm Page 48 Thursday, April 12, 2007 8:39 AM

The Building Block of the Semantic Web 49

To use rdf:type in the example RDF document is a little more complex.
Actually, the current document (as the one in List 3.4, for example) has been using
a so-called “shorthand” form of the RDF expression. It is also called concise typed
node element form. The full version is a combination of rdf:Description,
rdf:resource, and rdf:type, as shown in List 3.5.

This version is called the long form, and it appears more often in the literature
than the abbreviated form. We can now interpret it as follows:

This RDF statement describes the following resource:

FIGURE 3.4 The final RDF graph model.

LIST 3.5
RDF Document Using rdf:type

1: <?xml version="1.0"?>

2: <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns="http://www.yuchen.net/photography/Camera#">

3: <rdf:Description rdf:about="http://www.yuchen.net/rdf/
 NikonD70.rdf#Nikon-D70">

4: <rdf:type rdf:resource=”http://www.yuchen.net/
 photography/Camera#SLR”/>

5: <weight>1.4 lbs</weight>

6: </rdf:Description>

7: </rdf:RDF>

http://www.yuchen.net/photography/Camera#SLR

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.yuchen.net/photography/Camera#weight

http://www.yuchen.net/rdf/NikonD70.rdf#
Nikon-D70

1.4 lbs

Legend:

 Resource –

Literal String –

C9330_C003.fm Page 49 Thursday, April 12, 2007 8:39 AM

50 Introduction to the Semantic Web and Semantic Web Services

http://www.yuchen.net/rdf/NikonD70.rdf#Nikon-D70

This resource is an instance of the following type (class):

http://www.yuchen.net/photography/Camera#SLR

The http://www.yuchen.net/rdf/NikonD70.rdf#Nikon-D70 resource has
a weight of 1.4 lb.

As a summary, it is always a good practice to use rdf:about, rdf:Description,
and rdf:resource. Also, whenever you expect to see

<rdf:Description ...

and instead you see

<ns:className rdf:about ...

you should realize that it is the abbreviated form for

<rdf:Description rdf:about="...">
 <rdf:type resource="&ns;className"/>
...

where &ns; is the namespace URI bound to the ns prefix.

3.4.2 LITERAL VALUES AND ANONYMOUS RESOURCES

Before we go deeper into the syntax of RDF, let us again review the basic RDF
statement structure, as shown in Figure 3.5. Keeping this structure in mind, let us
remember the rule that the property value must be literal or a resource. In our previous
example, the property weight had a literal value of “1.4 lb.”

However, given that the Web itself is such a global resource, it might not be a
good idea to use a literal value such as 1.4 lb; when we do this, we assume that
anyone who accesses this property will be able to understand the unit that is being

Up to this point, we have covered the following RDF vocabulary: rdf:RDF,
rdf:ID, rdf:about, rdf:type, rdf:Description, rdf:resource.

FIGURE 3.5 RDF statement model.

ObjectSubject

equivalent to:

Value

Predicate

Property
Resource

C9330_C003.fm Page 50 Thursday, April 12, 2007 8:39 AM

The Building Block of the Semantic Web 51

used. This assumption is not always safe. For instance, someone who is not from
the United States would assume the weights are expressed in kilograms.

A better solution is to explicitly express the value and the unit in separate
property values. In other words, the value of the weight property will have two
components, the literal for the decimal value and an indication of the unit of measure
(e.g., pounds). In this situation, the decimal value acts as the main value of the
weight property, and the unit component exists just to provide additional contextual
information that qualifies the main value.

How do we then implement this? The solution is to model such a qualified
property as another kind of structured value. More specifically, a completely separate
resource could represent this structured value as a whole and be used as the object
of the original statement (given the rule that the property can be another resource).
This new resource can have properties representing the individual components of
the structured value. In our example, it should have two properties: one for the
decimal value and the other for the unit.

RDF provides a predefined rdf:value property to describe the main value of
a structured value. Therefore, in our example, the decimal could be given as the
value of the rdf:value property, and another resource should be used as the value
of the unit property, as shown in List 3.6. Now the property weight will have a
resource as its value. This resource, as we have discussed earlier, has two properties:
the first is the predefined rdf:value property, whose value is 1.4; the second is
the units property, defined in the uom namespace. What is the value of the
uom:units property? Well, interestingly enough, it uses another resource as its value.
Here, we assume that this resource, whose URI is http://www.something.org/
units#lbs, is already defined by someone else.

LIST 3.6
RDF Document Using rdf:value

1: <?xml version="1.0"?>

2: <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3: xmlns:uom="http://www.standards.org/measurements#"

4: xmlns="http://www.yuchen.net/photography/Camera#">

5: <rdf:Description rdf:about="http://www.yuchen.net/rdf/
 NikonD70.rdf#Nikon-D70">

6: <rdf:type rdf:resource="http://www.yuchen.net/photography/
 Camera#SLR"/>

7: <weight>

8: <rdf:Description>

9: <rdf:value>1.4</rdf:value>

10: <uom:units rdf:resource="http://www.something.org/
 units#lbs"/>

11: </rdf:Description>

12: </weight>

13: </rdf:Description>

14: </rdf:RDF>

C9330_C003.fm Page 51 Thursday, April 12, 2007 8:39 AM

52 Introduction to the Semantic Web and Semantic Web Services

Another important point to note is that the property weight does indeed have a
resource as its value, but what is the name of this resource? In the example, this
resource is defined using lines 8 to 11. On line 8, the <rdf:Description> tag does
not have anything like rdf:ID or rdf:about. This resource is an anonymous resource.

Why is the resource used by the weight property made anonymous? This is
because its purpose is just to provide a context for the two properties to exist. Other
RDF documents will have no need to use or add any new details to this resource.
Therefore, there is no need to give this resource an identifier.

An anonymous resource is also called a blank node. This fact becomes clearer in
Figure 3.6, which describes the foregoing example using an RDF graph. In the graph,
the anonymous resource is represented by the blank node. The RDF parsers will
normally generate a unique identifier for anonymous resources just to distinguish one
anonymous resource from another; it is mainly an internal usage within the parsers.

In RDF models, there is an easier way to implicitly create a blank node. This is
considered to be a shorthand method provided by RDF that involves the usage of
rdf:parseType keyword, as shown in List 3.7.

List 3.7 is identical to List 3.6. rdf:parseType="Resource" in line 7 is used
as the attribute of the weight element, and it indicates to the RDF parser that the
contents of the weight element (lines 8 and 9) should be interpreted as the descrip-
tion of a new resource (a blank node), and should be treated as the value of property
weight. Without seeing a nested rdf:Description tag, the RDF parser creates a

FIGURE 3.6 Use anonymous resource as the value of property weight.

http://www.yuchen.net/photography/Camera#SLR

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.yuchen.net/photography/Camera#weight

http://www.yuchen.net/rdf/NikonD70.rdf#
Nikon-D70

http://www.w3.org/1999/02/22-rdf-syntax-ns#value

1.4
http://www.standards.org/measurements#units

http://www.something.org/units#lbs

C9330_C003.fm Page 52 Thursday, April 12, 2007 8:39 AM

The Building Block of the Semantic Web 53

blank node as the value of the weight property, and then uses the enclosed two
elements as the properties of that blank node, which is exactly what we wish the
parser to accomplish.

Another way to represent a blank node is to use the so-called blank node
identifier; as this is also quite a popular approach, let us include it in this section.
Basically, we assign a blank node identifier to each blank node that we have in the
RDF model. However, this identifier serves to identify the blank node within a
particular RDF document; it is completely unknown outside the scope of the docu-
ment. Compared to the URI of a named resource, the URI always remains visible
outside the document in which it is assigned.

This blank node identifier method uses the RDF keyword rdf:nodeID. More
specifically, a statement using a blank node as its subject should use an rdf:Descrip-
tion element with an rdf:nodeID attribute instead of an rdf:about or rdf:ID
attribute. A statement using a blank node as its object should use a property element
with an rdf:nodeID attribute instead of an rdf:resource attribute. List 3.8 shows
the details. So much for the blank node, but let us remember that it is quite handy
and also frequent in many RDF documents; so ensure you are familiar with it.

LIST 3.7
RDF Document Using rdf:parseType

1: <?xml version="1.0"?>

2: <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3: xmlns:uom="http://www.standards.org/measurements#"

4: xmlns="http://www.yuchen.net/photography/Camera#">

5: <rdf:Description rdf:about="http://www.yuchen.net/rdf/
 NikonD70.rdf#Nikon-D70">

6: <rdf:type rdf:resource="http://www.yuchen.net/photography/
 Camera#SLR"/>

7: <weight rdf:parseType="Resource">

8: <rdf:value>1.4</rdf:value>

9: <uom:units rdf:resource="http://www.something.org/
 units#lbs"/>

10: </weight>

11: </rdf:Description>

12: </rdf:RDF>

LIST 3.8
RDF Document Using rdf:nodeID

1: <?xml version="1.0"?>

2: <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3: xmlns:uom="http://www.standards.org/measurements#"

4: xmlns="http://www.yuchen.net/photography/Camera#">

5: <rdf:Description rdf:about="http://www.yuchen.net/rdf/
 NikonD70.rdf#Nikon-D70">

C9330_C003.fm Page 53 Thursday, April 12, 2007 8:39 AM

54 Introduction to the Semantic Web and Semantic Web Services

The last issue in this section is about the “typed” literal. In List 3.8, in line 10
we use 1.4 as the value of the rdf:value property. Here, 1.4 is a plain “untyped”
literal, and only we know that the intention is to treat it as a decimal number; there
is no information in List 3.8 that explicitly indicates this.

Now, let us use the rdf:datatype keyword to provide information about how
to interpret the type of a given literal value. This is the so-called typed literal, and
you might also assume that RDF would have to provide a set of data type definitions.
Interestingly, RDF does not have such a data type system of its own, such as data
types for integers, real numbers, strings, dates, etc. It borrows an external data type
system and uses the rdf:datatype tag to explicitly indicate which external data
type system the RDF document is using.

The current practice is to use XML schema data types. The reason is that because
XML enjoys such great success, its schema data types would most likely be interop-
erable among different software agents. RDF documents can certainly use other data
type systems, provided that the software systems could process these sets of data
types as well.

Now, let us use rdf:datatype to clearly indicate that the value 1.4 should be
treated as a decimal value, as shown in List 3.9. In line 9, property rdf:value now
has an attribute named rdf:datatype whose value is the URI of the data type. In
our example, this URI is http://www.w3.org/2001/XMLSchema#decimal. The
result is the value of the rdf:value property, namely, 1.4, will be treated as a
decimal value as defined in the XML schema data types.

6: <rdf:type rdf:resource="http://www.yuchen.net/photography/
 Camera#SLR"/>

7: <weight rdf:nodeID="youNameThisNode"/>

8: </rdf:Description>

9: <rdf:Description rdf:nodeID="youNameThisNode">

10: <rdf:value>1.4</rdf:value>

11: <uom:units rdf:resource="http://www.something.org/
 units#lbs"/>

12: </rdf:Description>

13: </rdf:RDF>

LIST 3.9
RDF Document Using rdf:datatype

1: <?xml version="1.0"?>

2: <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3: xmlns:uom="http://www.standards.org/measurements#"

4: xmlns="http://www.yuchen.net/photography/Camera#">

5: <rdf:Description rdf:about="http://www.yuchen.net/rdf/
 NikonD70.rdf#Nikon-D70">

6: <rdf:type rdf:resource="http://www.yuchen.net/photography/
 Camera#SLR"/>

7: <weight>

8: <rdf:Description>

C9330_C003.fm Page 54 Thursday, April 12, 2007 8:39 AM

The Building Block of the Semantic Web 55

Note that there is no absolute need to use rdf:value in this example. A user-
defined property name, such as weightAmount, could have been used instead of
rdf:value, and the rdf:datatype attribute can still be used together with this
user-defined property. In fact, RDF does not associate any special meaning with
rdf:value; it is simply provided as a convenience for use in the cases described in
our example.

Also note that because the URI http://www.w3.org/2001/XMLSchema#decimal
is used as an attribute value, it has to be written out fully; it cannot be abbreviated.
However, this makes the line quite long, which might hurt readability in some cases.
To improve readability, some RDF documents would use XML entities. Recall that
an XML entity can associate a name with a string of characters, and this name can
be referenced anywhere in the XML document. When XML processors reach such
a name, they will replace it with the string of characters that normally represents
the real content. As we can make the name really short, this enables us to abbreviate
the long URI. To declare the entity, we can do the following:

<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>

A reference name xsd is defined here to be associated with the namespace URI
that contains the XML schema data types. We can use &xsd: (note the “:”; it is
necessary) anywhere in the RDF document to represent the preceding URI. Using
this abbreviation, we have the following more readable version, as shown in List 3.10.

9: <rdf:value rdf:datatype=

 "http://www.w3.org/2001/XMLSchema#decimal">1.4</rdf:value>

10: <uom:units rdf:resource="http://www.something.org/
 units#lbs"/>

11: </rdf:Description>

12: </weight>

13: </rdf:Description>

14: </rdf:RDF>

LIST 3.10
A More Readable RDF Document

1: <?xml version="1.0"?>

2: <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/
 XMLSchema#">]>

3: <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

4: xmlns:uom="http://www.standards.org/measurements#"

5: xmlns="http://www.yuchen.net/photography/Camera#">

6: <rdf:Description rdf:about="http://www.yuchen.net/rdf/
 NikonD70.rdf#Nikon-D70">

7: <rdf:type rdf:resource="http://www.yuchen.net/photography/
 Camera#SLR"/>

8: <weight>

9: <rdf:Description>

10: <rdf:value rdf:datatype="&xsd;decimal">1.4</rdf:value>

C9330_C003.fm Page 55 Thursday, April 12, 2007 8:39 AM

56 Introduction to the Semantic Web and Semantic Web Services

In the aforementioned example, xsd is declared on line 2 and used on line 10.
This is quite common in RDF documents, so ensure that you are comfortable with it.

We have now covered the most frequently used RDF syntax. This section does
not intend to be a full tutorial of the RDF language; however, we have covered
enough material already, so you can not only understand the rest of the book but
also read more about RDF on your own. There are certainly other capabilities
provided by RDF. In the next section, we will discuss them very briefly so you can
see how they fit into the whole picture of RDF.

3.4.3 OTHER RDF CAPABILITIES

The first such capability is the RDF containers. They are provided by RDF to describe
groups of things: for instance, all the SLR cameras produced by Nikon. The following
three types of containers are provided by RDF using a predefined container vocabulary:

• rdf:Bag

• rdf:Seq

• rdf:Alt

A resource can have type rdf:Bag. In this case, it represents a group of resources
or literals, such as all the SLR cameras produced by Nikon. The order of these
members is not significant; you only care about the whole group, not their individual
attributes, such as the release date of each model.

An rdf:Seq is the same as the rdf:Bag, except that the order is indeed signif-
icant. For instance, if we also want to know the release date of each Nikon SLR
camera, we will have to represent them using rdf:Seq.

rf:Alt is also a container; however, items in the container are alternatives. For
instance, you can use this container to describe a set of flight legs, each one of them
from Atlanta to Honolulu but at different times; and you really just need one of them.

The problem with the RDF containers is that the containers are always open. To
be more precise, a container just claims the identified resources are members; it
never excludes other resources as members. For instance, if one RDF document
includes some members, there might be another RDF document that adds some other

11: <uom:units rdf:resource="http://www.something.org/
 units#lbs"/>

12: </rdf:Description>

13: </weight>

14: </rdf:Description>

15: </rdf:RDF>

Up to this point, we have covered the following RDF vocabulary: rdf:RDF,
rdf:ID, rdf:about, rdf:type, rdf:Description, rdf:resource, rdf:value,
rdf:parseType, rdf:nodeID, rdf:datatype.

C9330_C003.fm Page 56 Thursday, April 12, 2007 8:39 AM

The Building Block of the Semantic Web 57

members to the same resource. This could be a very serious problem. To solve this
problem, we have the second RDF capability: RDF collection.

RDF uses the collection construct to describe a group that contains only the
specified resources as members. Its vocabulary includes the following keywords:

• rdf:first

• rdf:rest

• rdf:List

• rdf:nil

For specific examples, check with the online RDF documents at www.w3.org.
There are other RDF capabilities, such as RDF reification and XML Literals

(some authors suggest that we limit the use of XML Literals), which I leave to the
readers to explore; let us move on to more exciting topics about RDF.

3.5 FUNDAMENTAL RULES OF RDF

We have covered most of the topics about RDF, and it is time for us to summarize
some basic RDF rules. There are three basic rules; two of them have already been
presented in previous sections and should be self-evident. However, the third rule
may need more explanation; in fact, it is very important and we will devote another
section just to it. Let us take a look at the rules first:

Rule #1: The name of a resource must be global. In other words, if you doubt that
someone else might use the same name to refer to something else, then you cannot
use the same name.

Now we should have a better understanding of this rule. All the three basic
components of the RDF model — subject, predicate, and object — can be resources,
and this rule states that you have to use a URI to identify them (except for an
anonymous resource). The whole point is to ensure that the following is always true:
if two or more RDF documents use the same URI to describe a resource, then this
resource represents exactly the same concept in the real world.

However, assuming that everyone uses URIs to globally identify subjects, pred-
icates, and objects, matters can still (and very likely) go awry; two different RDF
documents can still use different URIs to refer to the same thing or concept, and the
authors of these documents could be unaware of the fact that the same concept has
already been named in the other document. To avoid reinventing the wheel, it is
always a good idea to search around and use the resources from existing vocabularies,
if possible, instead of making up new URIs every time. Therefore, using URIs to
globally and uniquely identify resources in RDF statements supports and promotes
the development and use of shared vocabularies on the Web. In fact, domain-specific
vocabularies are being developed constantly. As we will see later in this book, this
shared and common understanding of the concepts and classes is the key to Semantic
Web applications.

C9330_C003.fm Page 57 Thursday, April 12, 2007 8:39 AM

58 Introduction to the Semantic Web and Semantic Web Services

Rule #2: Knowledge (or information) is expressed as a statement in the form of subject-
predicate-object, and this order should never be changed.

This rule plays an important role in enabling machines to understand the knowl-
edge expressed in RDF statements. Before we get into the details, let us take a look
at this triple pattern once more.

Because the value of a property can be a literal or a resource, a given RDF statement
can take the form of alternating sequences of resource-property, as shown in List 3.11.

In List 3.11, #resource-0 has a property named propertyName-0; its value is
another resource described using lines 3 to 11 (#resource-1). On the other hand,
#resource-1 has a property named propertyName-1, whose value is yet another
resource described using lines 5 to 9. This pattern can go on and on; however, the
resource-property-value structure is never changed.

Why is this order so important? It is important because if we follow this order when
we create RDF statements, an RDF-related application (agent) will be able to understand
the meaning of these statements. To see this, let us study the following example:

Let myCamera represent http://www.yuchen.net/photography/Camera#.
List 3.2 to List 3.10 all express the following fact:

myCamera:Nikon-D70 myCamera:weight 1.4

We, as the creator of this statement, understand its meaning. However, for an
agent, the triple looks more like this:

$#!6^:af#@dy $#!6^:3pyu9a dcfa

However, the agent does understand the following:

$#!6^:af#@dy is the subject
$#!6^:3pyu9a is the predicate
dcfa is the object

LIST 3.11
The Pattern of an RDF Document

1: <rdf:Description rdf:resources="#resource-0">

2: <someNameSpace:propertyName-0>

3: <rdf:Description rdf:resource="#resource-1">

4: <someNameSpace:propertyName-1>

5: <rdf:Description rdf:resource="#resource-2">

6: <someNameSpace:propertyName-2>

7: ...

8: </someNameSpace:propertyName-2>

9: </rdf:Description>

10: </someNameSpace:propertyName-1>

11: </rdf:Description>

12: </someNameSpace:propertyName-0>

13: </rdf:Description>

C9330_C003.fm Page 58 Thursday, April 12, 2007 8:39 AM

The Building Block of the Semantic Web 59

And now, here is the interesting part: the agent also has a vocabulary it can
access, and the following fact is stated in this vocabulary:

property($#!6^:3pyu9a) is used exclusively on resource($#!6^:Af5%)

We will see what exactly is this vocabulary (in fact, it is called RDF schema),
and we will also find out how to express the above-mentioned fact using this
vocabulary in Chapter 4, but for now let us just assume that the fact is well expressed
in the vocabulary.

Given all these, the agent, without really associating any special meaning with
the preceding statement, can draw the following conclusion:

resource($#!6^:af#@dy) is an instance of resource($#!6^:Af5%)

When the agent displays this conclusion in the screen, it looks like this:

Nikon-D70 is an instance of DigitalCamera

It makes perfect sense. The key point here is, a given application cannot associate
any special meaning with the RDF statements. However, with some extra work (the
schema, for instance), the given application can act as if it does understand these
statements. In fact, once we understand more about the RDF schema, we will see
more of this exciting inference power in Chapter 4.

Do you want to see something exciting before going further? Well, study the
next rule.

Rule #3: The most exciting one! I can talk about resource at my will, and if I choose
to use an existing URI to identify the resource I am talking about, then the following
is true:

1. The resource I am talking about and the resource already identified by this
existing URI represents exactly the same concept.

2. Everything I have said about this resource is considered to be additional
knowledge about that resource.

This seems to be trivial and almost like a given. However, it can be quite powerful
in many cases. Let us recall the situation in the current Web. One fact about the
Internet that is quite attractive to all of us is that you can talk about anything you
want and you can publish anything you want. When you do this, you can also link
your document to any other page you would like to.

For example, assume that I have a small Web site on which I present several articles
about digital photography. I also have linked my page to www.goodPhoto.com. Some-
one else perhaps has done the same and has a link to www.goodPhoto.com, too. What
will this do to www.goodPhoto.com? Not much at all, except that some search engines
will realize that quite a few pages have linked to www.goodPhoto.com, and therefore,
the rank of this site should be upgraded. But this is pretty much all of it — the final
result is still the same: the Internet is a huge distributed database, from which it is
extremely hard to get information.

On the other hand, based on the preceding rule, all the RDF documents containing
a resource identified by the same known URI can be connected, based on a URI that
has a well-defined meaning. Although these RDF documents are most likely distributed

C9330_C003.fm Page 59 Thursday, April 12, 2007 8:39 AM

60 Introduction to the Semantic Web and Semantic Web Services

everywhere on the Internet, each one of them presents some knowledge about that
resource, and adding them together can produce some very powerful results.

Let us discuss further details in the next section.

3.6 AGGREGATION AND DISTRIBUTED
INFORMATION

3.6.1 AN EXAMPLE OF AGGREGATION

As we stated in the previous section, if any RDF document mentions some resource
using an existing URI, then the RDF statements will be talking about the same
concept and will be adding extra information to that resource. Also, this extra data
is just a small piece of knowledge that the whole Web contains.

The first thing to do then is to aggregate all these statements so we can get a
closer look at the whole picture. Let us take a look at one such example.

Assume that one of my friends is also interested in Nikon D70 and he is also
aware that I have created an RDF document describing this camera. After reading
my document, he decides to add more predicates to describe Nikon D70 better; List
3.12 shows what he has come up with.

In his document, he clearly indicates that he is describing something that already
exists by using the URI that I had created, and then adds two new properties,
minSensitivity and maxSensitivity, to describe the same camera.

Let us now assume that I have some aggregation tool available, which will
combine the RDF document he created with the one I have. After using this tool,
the new RDF document will appear as shown in List 3.13. We see that the new

LIST 3.12
Another RDF Document for the Same Resource

1 <?xml version="1.0"?>

2 <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/
 XMLSchema#">]>

3 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

4 xmlns:uom="http://www.standards.org/measurements#"

5 xmlns:ychen="http://www.yuchen.net/photography/Camera#"

5 xmlns="http://www.yufriend.net/photography/Camera#">

6 <rdf:Description rdf:about="http://www.yuchen.net/rdf/
 NikonD70.rdf#Nikon-D70">

7 <rdf:type rdf:resource="&yuchen;SLR"/>

8 <minSensitivity rdf:datatype="&xsd;integer">200
 </minSensitivity>

9 <maxSensitivity rdf:datatype="&xsd;integer">1600
 </maxSensitivity>

10 </rdf:Description>

11 </rdf:RDF>

C9330_C003.fm Page 60 Thursday, April 12, 2007 8:39 AM

The Building Block of the Semantic Web 61

information added by my friend is considered to be extra data and is added to the
original RDF document. But why is this powerful? This simple example may not
clearly show this; in the next section, we use a hypothetical real-world example to
further illustrate this.

One last point needs to be discussed here. It is clear to us by now that only a
named resource can be aggregated (given the URI of this resource is a reused URI).
Therefore, an anonymous resource cannot be aggregated. The reason is simple: if a
resource in a document is anonymous, an aggregation tool will simply not be able
to tell if this resource is talking about some resource already defined and described.
This is probably one disadvantage of using anonymous resources.

3.6.2 A HYPOTHETICAL REAL-WORLD EXAMPLE

To see the power of RDF aggregation, let us consider the following scenario: I would
like to buy a digital SLR camera, and I am currently considering either Nikon D70
or Canon 20D — both models seem to be quite impressive, and it is hard for me to
decide which one to go with.

There are three Nikon vendors and two Canon vendors in my neighborhood,
and there is also a discussion group over the Internet that mainly concentrates on

LIST 3.13
A New RDF Document Generated by Combining Two RDF Documents

1 <?xml version="1.0"?>

2 <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/
 XMLSchema#">]>

3 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

4 xmlns:uom="http://www.standards.org/measurements#"

5 xmlns:newp="http://www.yufriend.net/photography/Camera#"

6 xmlns="http://www.yuchen.net/photography/Camera#">

7 <rdf:Description rdf:about="http://www.yuchen.net/rdf/
 NikonD70.rdf#Nikon-D70">

8 <rdf:type rdf:resource="http://www.yuchen.net/photography/
 Camera#SLR"/>

9 <weight>

10 <rdf:Description>

11 <rdf:value rdf:datatype="&xsd;decimal">1.4</rdf:value>

12 <uom:units rdf:resource="http://www.something.org/
 units#lbs"/>

13 </rdf:Description>

14 </weight>

15 <newp:minSensitivity rdf:datatype="&xsd;integer">200</newp:
 minSensitivity>

16 <newp:maxSensitivity rdf:datatype="&xsd;integer">1600</newp:
 maxSensitivity>

17 </rdf:Description>

18 </rdf:RDF>

C9330_C003.fm Page 61 Thursday, April 12, 2007 8:39 AM

62 Introduction to the Semantic Web and Semantic Web Services

reviewing different SLR models. I would like to have the following information
before I can make my final decision about which camera to buy:

• How many Nikon and Canon SLRs are sold daily by each of these five
vendors?

• What are the reviews of the discussion group members? I would like to
read as many reviews as I can.

For a situation such as this, a database system is not a solution; these five
vendors are competitors (especially if they sell different brands), and none of them
will be willing to maintain a database that may give away their sales performance
secrets. Also, the reviewers will simply not bother to update their database, even
if one exists.

My solution is to ask each vendor to produce some RDF statements that I can
use (by paying them some money? No, I have friends working for each of these
vendors!); the only condition is that they need to use my URIs, instead of inventing
their own. I then e-mail the discussion group, informing them the URIs and telling
them that if anyone would like to provide a review, they should use the given URIs.

The two URIs that I give them are as follows:

<rdf:Description rdf:about="http://www.yuchen.net/rdf/NikonD70
.rdf#Nikon-D70">

<rdf:Description rdf:about="http://www.yuchen.net/rdf/Canon20D
.rdf#Canon-20D">

I would then use a crawler that visits the Web sites of these five vendors to
search for the RDF documents. List 3.14 shows one such document about D70.

Besides the preceding document for Nikon, I have also collected one RDF
statement about Canon, which is shown in List 3.15.

LIST 3.14
An RDF Document Collected by My Crawler (Nikon)

1 <?xml version="1.0"?>

2 <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/
 XMLSchema#">]>

3 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

4 xmlns:uom="http://www.standards.org/measurements#"

5 xmlns="http://www.yuchen.net/photography/Camera#">

6 <rdf:Description rdf:about="http://www.yuchen.net/rdf/
 NikonD70.rdf#Nikon-D70">

7 <rdf:type rdf:resource="http://www.yuchen.net/photography/
 Camera#SLR"/>

8 <itemSold rdf:datatype=”&xsd;integer”>12</itemSold>

9 </rdf:Description>

10 </rdf:RDF>

C9330_C003.fm Page 62 Thursday, April 12, 2007 8:39 AM

The Building Block of the Semantic Web 63

About the reviews, I have no idea when someone will present a review, or if
there is going to be any review at all; I would have my crawler visit the discussion
group quite often just to get reviews. List 3.16 is one review returned by the crawler.

After I get all the necessary RDF documents, I start to aggregate them. For the
Nikon D70 camera, the results are as shown in List 3.17. List 3.18 is the result for Canon.

LIST 3.15
An RDF Document Collected by My Crawler (Canon)

1 <?xml version="1.0"?>

2 <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/
 XMLSchema#">]>

3 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

4 xmlns:uom="http://www.standards.org/measurements#"

5 xmlns="http://www.yuchen.net/photography/Camera#">

6 <rdf:Description rdf:about="http://www.yuchen.net/rdf/
 Canon20D.rdf#Canon-20D">

7 <rdf:type rdf:resource="http://www.yuchen.net/photography/
 Camera#SLR"/>

8 <itemSold rdf:datatype=”&xsd;integer">8</itemSold>

9 </rdf:Description>

10 </rdf:RDF>

LIST 3.16
An RDF Document Created by Reviewer

1 <?xml version="1.0"?>

2 <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/
 XMLSchema#">]>

3 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

4 xmlns:uom="http://www.standards.org/measurements#"

5 xmlns="http://www.yuchen.net/photography/Camera#">

6 <rdf:Description rdf:about="http://www.yuchen.net/rdf/
 NikonD70.rdf#Nikon-D70">

7 <rdf:type rdf:resource="http://www.yuchen.net/photography/
 Camera#SLR"/>

8 <review rdf:datatype=”&xsd;string”>excellent!</review>

9 </rdf:Description>

10 </rdf:RDF>

LIST 3.17
Aggregation Result for Nikon

1 <?xml version="1.0"?>

2 <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/
 XMLSchema#">]>

C9330_C003.fm Page 63 Thursday, April 12, 2007 8:39 AM

64 Introduction to the Semantic Web and Semantic Web Services

3 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

4 xmlns:uom="http://www.standards.org/measurements#"

5 xmlns="http://www.yuchen.net/photography/Camera#">

6 <rdf:Description rdf:about="http://www.yuchen.net/rdf/
 NikonD70.rdf#Nikon-D70">

7 <rdf:type rdf:resource="http://www.yuchen.net/photography/
 Camera#SLR"/>

8 <weight>

9 <rdf:Description>

10 <rdf:value rdf:datatype="&xsd;decimal">1.4</rdf:value>

11 <uom:units rdf:resource="http://www.something.org/
 units#lbs"/>

12 </rdf:Description>

13 </weight>

14 <soldItem rdf:datatype="&xsd;integer">12</soldItem>

15 <soldItem rdf:datatype="&xsd;integer">16</soldItem>

16 <soldItem rdf:datatype="&xsd;integer">11</soldItem>

17 <review rdf:datatype="&xsd;string">excellent!</review>

18 <review rdf:datatype="&xsd;string">I like this the best
 </review>

19 <review rdf:datatype="&xsd;string">cool stuff</review>

20 <review rdf:datatype="&xsd;string">good for everything
 </review>

21 </rdf:Description>

22 </rdf:RDF>

LIST 3.18
Aggregation Result for Canon

1 <?xml version="1.0"?>

2 <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/
 XMLSchema#">]>

3 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

4 xmlns:uom="http://www.standards.org/measurements#"

5 xmlns="http://www.yuchen.net/photography/Camera#">

6 <rdf:Description rdf:about="http://www.yuchen.net/rdf/
 Canon20D.rdf#Canon-20D">

7 <rdf:type rdf:resource="http://www.yuchen.net/photography/
 Camera#SLR"/>

8 <weight>

9 <rdf:Description>

10 <rdf:value rdf:datatype="&xsd;decimal">1.6</rdf:value>

11 <uom:units rdf:resource="http://www.something.org/
 units#lbs"/>

12 </rdf:Description>

13 </weight>

14 <soldItem rdf:datatype="&xsd;integer">6</soldItem>

15 <soldItem rdf:datatype="&xsd;integer">9</soldItem>

16 <review rdf:datatype="&xsd;string">good enough</review>

C9330_C003.fm Page 64 Thursday, April 12, 2007 8:39 AM

The Building Block of the Semantic Web 65

Now you see my point. The two RDF documents have achieved what I wanted.
My own application can now do all kinds of things, including showing the results
in a nice table.

This example shows the power of RDF statements and also the power of aggre-
gation. All the distributed information is finally collected together and used in an
intelligent way. This is accomplished just by agreeing upon the URIs; different
parties can still present their information as they wish. For instance, a Nikon vendor
can add new properties (predicates) without breaking my application; there is also
no need for other vendors to change anything. The same is true for the reviewers.

On the other hand, if we do not have anything in common, there will be a problem.
It is be almost impossible to write an application to accomplish what I achieved earlier.
Even if it were possible, it would be extremely expensive to maintain the code; a single
change by any of the vendors would completely break my application.

In Chapter 4, we will start to look at the RDF schema. After we have enough
knowledge of RDF schema, we will be able to see more exciting examples on the Web.

3.7 MORE ABOUT RDF

Before we get into RDF schema, let us discuss two more issues about RDF.

3.7.1 THE RELATIONSHIP BETWEEN DC AND RDF

We have discussed several important issues about creating RDF documents in the
previous hypothetical example. One of the key points to remember is to make our
own RDF documents have something in common with others that already exist. For
instance, it is perfectly legal to make up our own URIs to represent the subjects and
objects if no one ever created them yet. However, if we are indeed describing
something that is already depicted by someone else and if we are sure that these
subjects and objects do share the same semantics, the best thing to do is to reuse
the URIs that are already being used to represent these resources.

In fact, this rule is applicable not only to subjects and objects, but also to
predicates. One benefit of reusing existing predicates is that related applications can
use the information in your RDF documents without requiring the developers to
modify them to recognize your predicates.

Dublin Core (discussed in Chapter 1) is widely used as a vocabulary to describe
documents (Web pages, for instance). Therefore, if we are using RDF to describe a
document, or maybe part of our RDF document is to describe a document, we should
use the DC predicates as much as we can: the Title predicate, Creator predicate,
to name just a few.

By now, the relationship between Dublin Core and RDF should be clear: Dublin
Core is a group of standard URIs that RDF documents should make use of whenever
it is appropriate to do so.

17 <review rdf:datatype="&xsd;string">okay</review>

18 </rdf:Description>

19 </rdf:RDF>

C9330_C003.fm Page 65 Thursday, April 12, 2007 8:39 AM

66 Introduction to the Semantic Web and Semantic Web Services

Now, let us recall the last hypothetical example where we had used some
aggregation tools to get the sales information about Nikon and Canon cameras. We
are very happy with the result, and we want to give ourselves some credit by adding
the creator and date information into the final RDF file. To do this, we can use
Dublin Core vocabulary without inventing our own, as shown in List 3.19.

Lines 22 and 23 show the Dublin Core predicates used to describe the creator
and creation date of the document, and we can certainly add more information if
we want. But you see how easy it is to use it, as you just need to specify the Dublin
Core namespace and use it anywhere you want in your document.

LIST 3.19
Aggregation Result with the creator and date Information

1 <?xml version="1.0"?>

2 <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/
 XMLSchema#">]>

3 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

4 xmlns:dc="http://www.purl.org/metadata/dublin-core#"

5 xmlns:uom="http://www.standards.org/measurements#"

6 xmlns="http://www.yuchen.net/photography/Camera#">

7 <rdf:Description rdf:about="http://www.yuchen.net/rdf/
 NikonD70.rdf#Nikon-D70">

8 <rdf:type rdf:resource="http://www.yuchen.net/photography/
 Camera#SLR"/>

9 <weight>

10 <rdf:Description>

11 <rdf:value rdf:datatype="&xsd;decimal">1.4</rdf:value>

11 <uom:units rdf:resource="http://www.something.org/
 units#lbs"/>

13 </rdf:Description>

14 </weight>

15 <soldItem rdf:datatype="&xsd;integer">12</soldItem>

16 <soldItem rdf:datatype="&xsd;integer">16</soldItem>

17 <soldItem rdf:datatype="&xsd;integer">11</soldItem>

18 <review rdf:datatype="&xsd;string">excellent!</review>

19 <review rdf:datatype="&xsd;string">I like this the best
 </review>

20 <review rdf:datatype="&xsd;string">cool stuff</review>

21 <review rdf:datatype="&xsd;string">good for everything
 </review>

22 <dc:creator>Liyang Yu</dc:creator>

23 <dc:date>2005-06-21</dc:date>

24 </rdf:Description>

25 </rdf:RDF>

C9330_C003.fm Page 66 Thursday, April 12, 2007 8:39 AM

The Building Block of the Semantic Web 67

3.7.2 THE RELATIONSHIP BETWEEN XML AND RDF

The relationship between XML and RDF can be described very simply: RDF is a
more restricted form of XML. RDF uses the XML syntax and its namespace concept;
it is another XML vocabulary, designed to give meaning to information so that the
information distributed over the Internet becomes machine-processable.

Given this relationship between XML and RDF, it is natural to ask why XML
cannot accomplish what RDF has accomplished.

There are several reasons for this. First of all, XML provides very limited
semantics, and even for this limited semantics, it is quite ambiguous. This is nicely
summarized as follows:

XML is only the first step to ensuring that computers can communicate freely. XML
is an alphabet for computers and as everyone traveling in Europe knows, knowing the
alphabet doesn’t mean you can speak Italian or French.

— Business Week, March 18, 2002 [32]

The key point here is, XML is by far the best format to share data on the Web
and exchange information between different platforms and applications; however, it
does not have enough restrictions to express semantics.

Here is an example. How do we use XML to express the fact that the author of
Introduction to the Semantic Web is Liyang Yu? Using XML, you have several ways
to do this (see List 3.20).

LIST 3.20
Ambiguity of XML Documents

<!-- form 1 -->

<author>

 <firstName>Liyang</firstName>

 <lastName>Yu</lastName>

 <book>

 <title>Introduction to the Semantic Web</title>

 </book>

</author>

<!-- form 2 -->

<author>

 <name>Liyang Yu</name>

 <book>

 <title>Introduction to the Semantic Web</title>

 </book>

</author>

C9330_C003.fm Page 67 Thursday, April 12, 2007 8:39 AM

68 Introduction to the Semantic Web and Semantic Web Services

You can tell there is no agreement on the structure you can use. An automatic
agent that works on a large scale is virtually impossible, if not prohibitively expensive
to build and maintain. On the other hand, using RDF to express the same idea is
very straightforward and leaves no room for any ambiguity, as shown in List 3.21.
The only part you can change in List 3.21 is the URIs of the resources (you have
to name them if they do not already exist). Any tool or software agent can easily
characterize this structure and understand which part of the structure is the subject,
the property, and the value of that property.

Second, parsing XML statements heavily depends on the tree structure, which
is not quite scalable on a global basis. To be more specific, you can easily make up
an XML document so that its representation in computer memory depends on the
data structures, such as tree and character strings. In general, these data structures
can be quite hard to handle, especially when large.

An RDF statement presents a very simple data structure: a directly labeled graph
that has long been a well-understood data structure and is also quite scalable for a
large data set. The nodes of the graph are the resources or literals, the edges are the
properties, and the labels are URIs of nodes and edges. You can certainly change
the graph into a collection of triples (subject-predicate-object) that fit into the
framework of relational database very well. All these are extremely attractive, com-
pared to XML documents.

The third reason, which is even more important, is that using the RDF format
promotes the development and usage of standardized vocabularies (or ontologies,
as you will see in subsequent chapters). The more you understand about the Semantic
Web, the more you will appreciate the importance of these vocabularies. The fol-
lowing are some of the benefits of using standard vocabularies:

<!-- form 3 -->

<author>

 <name>Liyang Yu</name>

 <book>Introduction to the Semantic Web</book>

</author>

LIST 3.21
Using an RDF Document to Express the Fact Described in List 3.20

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:dc="http://www.purl.org/metadata/dublin-core#">

 <rdf:Description rdf:about="http://yuchen.net/book#semanticweb">

 <dc:title>Introduction to the Semantic Web</dc:title>

 <dc:creator>Liyang Yu</dc:creator>

 </rdf:description>

</rdf:RDF>

C9330_C003.fm Page 68 Thursday, April 12, 2007 8:39 AM

The Building Block of the Semantic Web 69

• Without a shared vocabulary, the same words can always mean different
concepts, and different words can possibly have the same meaning.

• Without a shared vocabulary, there will be no way to semantically markup
a Web page.

• Without a shared vocabulary, distributed information will likely remain
“distributed”; an automatic agent that is capable of processing this dis-
tributed information on a global scale is just too hard to build.

By now, the reason why the RDF format needed to be invented should be clear
to you. XML is unequalled as an information-exchange format over the Internet,
but by itself, it simply does not provide what we need for the construction of the
Semantic Web.

If you are still not convinced, try this small experiment. Take the hypothetical
example we discussed earlier (three Nikon vendors and two Canon vendors), replace
all the RDF documents by XML documents, and see how many more constraints
you need to artificially impose to make it work and how much more case-specific
code you need to write. The benefit of the RDF format will become apparent.

3.8 RDF TOOLS

In this last section, we take a look at the tools we can use for RDF documents. In
particular, we are going to discuss one such tool: the RDF validator provided by
www.w3.org at www.w3.org/RDF/validator/. We will look at other RDF tools in
subsequent chapters.

I recommend the use of this tool, especially when you are learning the RDF
language; it at least indicates whether the submitted RDF document is in proper
RDF format or not. Let us take a look at some examples.

First, open the Web site of the validator; this tool will be displayed as shown in
Figure 3.7.

Paste the RDF document shown in List 3.22 into the document window, and ask
for the triples only (if you ask for the graph, it might take a long time).

LIST 3.22
A Simple RDF Document for the Validation Example

1 <?xml version="1.0"?>

2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

3 xmlns:uom="http://www.standards.org/measurements#"

4 xmlns="http://www.yuchen.net/photography/Camera#">

5 <rdf:Description rdf:about="http://www.yuchen.net/rdf/
 NikonD70.rdf#Nikon-D70">

6 <rdf:type rdf:resource="http://www.yuchen.net/photography/
 Camera#SLR"/>

7 <weight>

8 <rdf:Description>

C9330_C003.fm Page 69 Thursday, April 12, 2007 8:39 AM

70 Introduction to the Semantic Web and Semantic Web Services

After clicking the “parse RDF” key, we will get the result shown in Figure 3.8;
so we know that this RDF document is in proper format. As we can see, the RDF
statements are shown in the form of triples.

Up to this point, we have gained a solid understanding of RDF. To make the
picture more complete, we need to learn the other half of RDF: the RDF schema.
This will be the main topic of Chapter 4.

9 <rdf:value rdf:datatype="http://www.w3.org/2001/
 XMLSchema#decimal">1.4</rdf:value>

10 <uom:units rdf:resource="http://www.something.org/
 units#lbs"/>

11 </rdf:Description>

12 </weight>

13 </rdf:Description>

14 </rdf:RDF>

FIGURE 3.7 RDF document validator provided by www.w3.org.

C9330_C003.fm Page 70 Thursday, April 12, 2007 8:39 AM

The Building Block of the Semantic Web 71

FIGURE 3.8 Validation result.

C9330_C003.fm Page 71 Thursday, April 12, 2007 8:39 AM

