4 RDFS, Taxonomy,
and Ontology

4.1 OVERVIEW: WHY WE NEED RDFS

Congratulations on coming this far with me. Now that we are going to learn a new
topic again, let us hear the good news first (and there is no bad news this time):
RDEFS is written in RDF, so it is not as scary as you might think.

RDFS stands for RDF Schema. In this section, we will talk about why we need
RDFS and what it is. As usual, let us go back to our favorite example, shown in
List 3.19.

Clearly, it is a perfectly legal RDF document (we have validated this document
in the previous chapter): it describes the Nikon D70 camera. But, do you see
something is missing here? For example:

* Line 8 says Nikon D70 is an instance of a class called sLR, but where is
this class defined? What does it look like?

e If sLris a class, are there any other classes that are defined as its super-
classes or subclasses?

* The rest of this RDF document describes several properties of this class
(such as soldItem and review), and if you are familiar with object-
oriented design, these properties can be viewed as member variables. But
the question is, are there any other properties that one can define?

You can ask more questions like these. These questions underline the absence
of a vocabulary that defines classes, subclasses, class member variables, and also
the relations between these classes.

Yet the reality is that this vocabulary will always be missing in the RDF world.
As you can tell, RDF can be used to describe resources in a structured way that
machines can process; it can also be used to assert relations between these
resources so that machines can be empowered with some basic reasoning capa-
bilities. However, it does not define the vocabulary used; that is, RDF does not
say anything about the classes, subclasses and the relations that may exist between
these classes.

So, what are the implications if this vocabulary is always missing? Nothing.
RDF documents can still be used as a set of stand-alone statements; machines can
still read them and make inferences based on these statements. However, this capa-
bility will be very limited and can never reach the global level that we are looking for.

To make the distributed information and data over the Internet more machine-
friendly and machine-processable, we will need such a vocabulary and, again, we

73

74 Introduction to the Semantic Web and Semantic Web Services

will have to create this dictionary. As you might have guessed, RDFS is used to create

such a vocabulary. It can be viewed as an RDF vocabulary description language. RDFS

in conjunction with RDF statements will push the Internet one step further toward

machine-readability, and this additional step cannot be accomplished by RDF alone.
What exactly is RDFS, then? We can summarize it as follows:

* RDFS is a language one can use to create a vocabulary for describing
classes, subclasses, and properties of RDF resources; it is a recommen-
dation from W3C [14].

* The RDEFS language also associates the properties with the classes it defines.

* RDFS can add semantics to RDF predicates and resources: it defines the
meaning of a given term by specifying its properties and what kinds of
objects can be the values of these properties.

As we have mentioned before, RDFS is written in RDF. In fact, not only is
RDFS written in RDF, but RDFS also uses the same data model as RDF, i.e., a graph
or triples. In this sense, RDFS can be viewed as an extension of RDF.

Before we get into the details of RDFS, let us see how it can help us by making
the Internet more machine-processable. This is dealt with in the next section.

4.2 RDFS + RDF: ONE MORE STEP TOWARD MACHINE-
READABILITY

As discussed in the previous section, RDFS is all about vocabulary. To see the
power of such a vocabulary, let us build one first; see Figure 4.1. It is a simple
vocabulary, but it is good enough to demonstrate our point, and it will become
richer in the later sections.

This simple vocabulary tells us the following fact:

We have a resource called Camera, and Digital and Film are its two subresources.
Also, resource Digital has two subresources, SLR and Point-and-Shoot.
Resource SLR has a property called has-spec, whose value is the resource called
Specifications. Also, SLR has another property called owned-by, whose value
is the resource Photographer, which is a subresource of Person.

Now consider the RDF document in List 4.1. Together with the vocabulary shown
in Figure 4.1, what inferences can be made by the machine? Actually, it is quite
impressive; see List 4.2. In fact, I did not list all the conclusions that can be drawn by
the machine. Try to list the rest of these conclusions yourself. For example, the machine
can also conclude that http://www.yuchen.net/rdf/NikonD70#Nikon-D70 is also
a Digital resource, right?

Note that the foregoing reasoning is not done by you or me; it is done by a machine.
Think about this for a while, and you should see that given the structure of RDF triples
and given the structure of the vocabulary (we will see these structures in the next
section), it is not difficult for a machine to carry out this reasoning. The final result is
that a machine seems to be able to understand the information on the Web.

RDFS, Taxonomy, and Ontology 75

Camera

/N

Digital Film

N

SL Point-And-Shoot
"haS_SPEC".,»""’: “owned by”
Specification Photographer

Person

superClass subClass

property: >

FIGURE 4.1 A simple camera vocabulary.

LIST 4.1
A Simple RDF Document Using the Vocabulary Shown in Figure 4.1

1: <?xml version="1.0"?>
2: <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
3: xmlns="http://www.yuchen.net/photography/Camera.rdfs#">
4 <rdf:Description
rdf:about="http://www.yuchen.net/rdf/NikonD70.rdf#Nikon-D70">
5: <rdf:type
rdf:resource="http://www.yuchen.net/photography/Camera#SLR" />

6: <owned_by rdf:resource="http://www.yuche.net/people#Liyang
Yu"/>
7: </rdf:Description>

8: </rdf:RDF>

Can this vocabulary help search engines? Yes. Recall the Semantic Web search
engine presented in Chapter 2; I leave it to you to come up with the reasons why
this vocabulary can help this search engine. Here is a hint: Suppose I use the keyword
Digital to search for information about digital cameras; assume also that one Web
document has been marked up to have the aforementioned RDF triples associated
with it. The search engine reads the RDF triples and concludes that this Web page

76 Introduction to the Semantic Web and Semantic Web Services

LIST 4.2
Conclusions Drawn by the Machine Based on List 4.1 and Figure 4.1

Fact: "owned-by" is a property used to describe SLR and now it
is used to describe http://www.yuchen.net/rdf/
NikonD70#Nikon-D70

conclusion: http://www.yuchen.net/rdf/NikonD70#Nikon-

D70 must be a SLR

Fact: Only Photographer can be used as the value of property
"owned-by" and now http://www.yuchen.net/people#LiyangYu
is used as its value

conclusion: http://www.yuchen.net/people#LiyangYu must be a
Photographer

Fact: Photographer is also a Person

Conclusion: http://www.yuchen.net/people#LiyangYu is a Person

is about SLR, and as SLR is a subresource of Digital, this Web document is indeed
relevant; the search engine will include this page into its returned page set. Note
that this Web page may not contain the word Digital at all!

The important point is that by using just RDF triples, the foregoing reasoning
cannot be done; the power comes from the combination of RDF triples and the RDF
vocabulary, which we call RDF schema.

We now have enough motivation to dive into the details of RDF schema, which
is about how to express the vocabulary (such as the one shown in Figure 4.1) in
such a way that the machine can understand.

4.3 CORE ELEMENTS OF RDFS
4.3.1 SyNnTAX AND EXAMPLES

In this section, the following core elements will be discussed:

Core classes: rdfs:Resource, rdf:Property, rdfs:Class, rdfs:datatype
Core properties: rdfs:subClassOf, rdfs:subPropertyOf
Core constraints: rdfs:range, rdfs:domain

Let us start by defining the resource Camera, the top resource in Figure 4.1. Note
that “resource” in the world of RDF schema has the same semantics as “class,” so
these two words will be used interchangeably. Also, let us name the rdfs document
Camera.rdfs. List4.3 shows what we do when defining a class in the RDF schema file.

LIST 4.3
Using RDFS to Define the sLR Class

1/

// Camera.rdfs

RDFS, Taxonomy, and Ontology 77

//

1: <?xml version="1.0"?>

2: <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"

4z xml:base="http://www.yuchen.net/photography/Camera.rdfs">
5: <rdf:Description rdf:ID="Camera">

6: <rdf:type

rdf:resource="http://www.w3.0rg/2000/01/rdf-schema#Class" />
</rdf:Description>
8: </rdf:RDF>

~

Let us understand List 4.3 line by line. First of all, everything is defined between
<rdf:RDF> and </rdf:RDF>, indicating this document is either an RDF document
or an RDF schema document. Starting from line 2, several namespaces are declared.
The new one here is the rdfs namespace; the keywords for the RDF schema are
defined in this namespace. Line 4 defines a namespace for our camera vocabulary.
Note that xml:base is used; therefore, the namespace does not end with #, as the
rule of concatenating the URI is as follows:

xml:base + # + rdf:ID value

Lines 5 to 7 define the class Camera using rdf:ID and rdf:type properties.
We can interpret these lines as follows:

A class, Camera, is defined in this RDF schema document; it is a subclass of
rdfs:Resource.

Note that if we define a class without specifying any rdfs: subClassOf property
(explained later), it is then assumed that this defined class is a subclass of
rdfs:Resource, which is the root class of all classes.

You might have guessed that we have a simpler way of expressing the same
idea. You are right. Using the simpler form, the Camera.rdfs file now looks like
the one in List 4.4. This simpler form (which does not use the rdf:type property)
looks much cleaner and is more intuitive: line 5 uses rdfs:Class to define a class,
and it also uses rdf:ID to provide a name, Camera, to the newly defined class. We
will use this form for the rest of this book.

LIST 4.4
A Simpler Version of List 4.3

//

// Camera.rdfs

//

1: <?xml version="1.0"?>

2: <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"

4 xml:base="http://www.yuchen.net/photography/Camera.rdfs">
5 <rdfs:Class rdf:ID="Camera">

78 Introduction to the Semantic Web and Semantic Web Services

6: </rdfs:Class>
7: </rdf:RDF>

Again, every class is assumed to be a subclass of rdfs:Resource. Camera is
used as a top-level class in our vocabulary, so it is a direct subclass of
rdfs:Resource. Another top class in our vocabulary is Person, and we can also
define it in the same RDF schema document; see List 4.5.

LIST 4.5

Adding Class Person to List 4.4
//

// Camera.rdfs

//

1: <?xml version="1.0"?>

: <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xml:base="http://www.yuchen.net/photography/Camera.rdfs">

<rdfs:Class rdf:ID="Camera">
</rdfs:Class>
<rdfs:Class rdf:ID="Person">
</rdfs:Class>
</rdf :RDF>

W 0 J o U1 b W N

What about the subclasses in the vocabulary? For instance, Digital is a subclass
of camera. How are these subclasses defined? We can use the rdfs:subClassOf
property to ensure the class is a subclass of the other class. This is shown in List 4.6.

LIST 4.6
Adding Subclasses

//
// Camera.rdfs
//

1l: <?xml version="1.0"?>

2: <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"

4: xml:base="http://www.yuchen.net/photography/Camera.rdfs">
5: <rdfs:Class rdf:ID="Camera">

6: </rdfs:Class>

7: <rdfs:Class rdf:ID="Person">

8: </rdfs:Class>

9: <rdfs:Class rdf:ID="Digital">

10: <rdfs:subClassOf rdf:resource="#Camera"/>

11: </rdfs:Class>
12: <rdfs:Class rdf:ID="Film">

RDFS, Taxonomy, and Ontology 79

13: <rdfs:subClassOf rdf:resource="#Camera"/>
14: </rdfs:Class>

15: <rdfs:Class rdf:ID="SLR">

16: <rdfs:subClassOf rdf:resource="#Digital"/>
17: </rdfs:Class>

18: <rdfs:Class rdf:ID="Point-And-Shoot">

19: <rdfs:subClassOf rdf:resource="#Digital"/>
20: </rdfs:Class>

21: <rdfs:Class rdf:ID="Photographer">

22: <rdfs:subClassOf rdf:resource="#Person"/>
23: </rdfs:Class>

24: <rdfs:Class rdf:ID="Speicifications">

25: </rdfs:Class>

26: </rdf:RDF>

Lines 9 to 25 define all the subclasses that are used in our vocabulary shown in
Figure 4.1. The key RDF schema property used to accomplish this is rdfs:sub-
ClassoOf. Let us study this property in greater detail.

First, note how the base class is identified in the rdfs:subClassOf property.
For instance, line 9 defines a class, namely, Digital, and line 10 uses the rdfs: sub-
ClassOf property to specify that the base class of Digital is Camera. Camera is
identified as follows:

<rdfs:subClassOf rdf:resource="#Camera"/>

This is perfectly fine in this case as when the parser sees #Camera, it assumes that
class camera must have been defined in the same document (which is true in this
case). To get the URI of class camera, it concatenates xml:base and this name
together to get the following:

http://www.yuchen.net/photography/Camera.rdfs#Camera

This is clearly the right URI for this class. But what if the base class is defined in
some other document? The solution is simple: use the full URI for the class. We
will see such examples later.

Second, rdfs:subClassOf can be used multiple times to describe a class. Let
us say you have already defined a class Artist; you can define Photographer as
follows:

<rdfs:Class rdf:ID="Photographer">
<rdfs:subClassOf rdf:resource="#Person"/>
<rdfs:subclassOf rdf:resource="#Artist"/>
</rdfs:Class>

This means class Photographer is a subclass of both Person class and Artist
class. Therefore, any instance of Photographer is simultaneously an instance of
both Person and Artist. What if rdfs:subClassOf property is not used at all, as
when we defined class camera? Then any instance of Camera is also an instance of
class rdfs:Resource.

80 Introduction to the Semantic Web and Semantic Web Services

Up to this point, we have covered the following RDF schema vocabulary:
rdfs:Class and rdfs:subClassOf.

Now that we have defined all the classes in our camera vocabulary, let us define
properties.

To define a property, rdf:Property type is used. The rdf:ID in this case
specifies the name of the property; furthermore, rdfs:domain and rdfs:range
together indicate how the property is being defined. Let us take a look at List 4.7.

LIST 4.7
Adding Property Definitions

//

// Camera.rdfs

//

1: <?xml version="1.0"?>

2: <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"

4 xml:base="http://www.yuchen.net/photography/Camera.rdfs">
5

// all the classes definitions as shown in version 0.3

25:

26: <rdf:Property rdf:ID="has_spec">

27: <rdfs:domain rdf:resource="#SLR"/>

28: <rdfs:range rdf:resource="#Specifications"/>

29: </rdf:Property>

30: <rdf:Property rdf:ID="owned by">

31: <rdfs:domain rdf:resource="#SLR"/>

32: <rdfs:range rdf:resource="#Photographer"/>
33: </rdf:Property>

34: </rdf:RDF>

As shown in List 4.7, lines 26 to 29 define the property called has_spec, and
lines 30 to 33 define another property called owned_by. Using has_spec as an
example, we can interpret this as follows:

We define a property called has_spec. It can only be used to describe the character-
istics of class (domain) SLR, and its possible values (range) can only be instances of
class Specifications.

Or equivalently:
* Subject: SLR

¢ Predicate: has_spec
* Object: specifications

RDFS, Taxonomy, and Ontology 81

You can use the same idea to understand the property owned_by defined in lines 30
to 33. Let us discuss rdfs:domain and rdfs:range.

RDF schema property rdfs:domain is used to specify which class the property
being defined can be used with (read the previous example again). It is optional; in
other words, you can declare property owned_by like this:

<rdf:Property rdf:ID="owned by">
<rdfs:range rdf:resource="#Photographer"/>
</rdf:Property>

This declaration indicates that property owned_by can be used to describe any class;
for instance, you can say “a Person is owned_by a Photographer”! In most cases,
this is not what you want, so you may create your definition like this:

<rdf:Property rdf:ID="owned by">
<rdfs:domain rdf:resource="#SLR"/>
<rdfs:range rdf:resource="#Photographer"/>
</rdf:Property>

Now it makes sense: owned_by property can only be used with the class specified
by rdfs:domain, namely, SLR.

It is interesting to know that when you define a property, you can specify multiple
rdfs:domain properties. In this case, you are indicating that the created property
can be used with an instance that is an instance of every class defined by
rdfs:domain property. For example,

<rdf:Property rdf:ID="owned by">
<rdfs:domain rdf:resource="#SLR"/>
<rdfs:domain rdf:resource="#Point-And-Shoot"/>
<rdfs:range rdf:resource="#Photographer"/>
</rdf:Property>

This states that the property owned_by can only be used with something that is an
SLR camera and a point-and-shoot camera at the same time. In fact, an SLR camera
can be used as a point-and-shoot camera, so you can say that an SLR camera is also
a point-and-shoot camera.

The same scenarios can be used with rdfs:range. First of all, it is optional,
like the following:

<rdf:Property rdf:ID="owned by">
<rdfs:domain rdf:resource="#SLR"/>
</rdf:Property>

This states that property owned_by can be used with SLR class, but it can take any
value. You have seen the case where exactly one rdfs:range property is used
(previous example). When you use multiple rdfs:range properties such as this
(assume we have also defined a class called Journalist):

<rdf:Property rdf:ID="owned by">
<rdfs:domain rdf:resource="#SLR"/>
<rdfs:range rdf:resource="#Photographer"/>
<rdfs:range rdf:resource="#Journalist"/>
</rdf:Property>

82 Introduction to the Semantic Web and Semantic Web Services

This states that property owned_by can be used to depict SLRs, and its value has to be
someone who is a Photographer and Journalist at the same time: a photojournalist.

Before we move on to the next topic, there are several points you should pay
attention to. Let us look at these now.

The first point is that class is in the rdfs namespace and Property is in the
rdf namespace. Therefore, there is no typo in the preceding lists.

Second, when defining the aforementioned two properties, we used the abbre-
viated form. It is important to know this as you might see the long form in other
documents. The two forms are equivalent (see List 4.8).

LIST 4.8
Short Form vs. Long Form

Shortform:
<rdf:Property rdf:ID="owned by">
<rdfs:domain rdf:resource="#SLR"/>
<rdfs:range rdf:resource="#Photographer"/>
</rdf:Property>
Longform:
<rdf:Description rdf:ID="owned_ by">
<rdf:type
rdf:resource="http://www.w3.0r/1999/02/22-rdf-syntx-
ns#Property" />
<rdfs:domain rdf:resource="#SLR"/>
<rdfs:range rdf:resource="#Photographer"/>
</rdf:Description>

The last point to be aware is that when we use rdfs:domain and rdfs:range
properties, the rdf : resource is always written similarly to the following (see the
previous lists):

<rdfs:domain rdf:resource="#SLR"/>

Again, the reason we can do this is because SLR is declared locally; i.e., SLR is
defined in the same document. If we need to use some resource that is not defined
locally, we need to use the proper URI for that resource. For instance, suppose that
Journalist is defined in some other namespace called http://someOtherNs.org
instead of locally, we should use the following:

<rdf:Property rdf:ID="owned by">

<rdfs:domain rdf:resource="#SLR"/>

<rdfs:range rdf:resource="#Photographer"/>

<rdfs:range rdf:resource="http://www.someOtherNs.org#Journalist"/>
</rdf:Property>

Up to this point, we have covered the following RDF schema vocabulary:
rdfs:Class, rdfs:subClassOf, rdf:Property, rdfs:domain, and
rdf:range.

RDFS, Taxonomy, and Ontology 83

As we discussed earlier, property rdfs:range is used to specify the possible values
of a property being declared. In some cases, the property being defined can simply
have an untyped string as its value. For example, if we define a property called
model in our simple camera vocabulary, and this property can take values such as
D70 (a simple string), we can declare it like this:

<rdf:Property rdf:ID="model">
<rdfs:domain rdf:resource="#Specifications"/>
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/01/rdf-schema
#Literal"/>
</rdf:Property>

In fact, you can even omit the rdfs:range specification, indicating that model
property can take any value:

<rdf:Property rdf:ID="model">
<rdfs:domain rdf:resource="#Specifications"/>
</rdf:Property>

However, the problem with using an untyped string or any value is that the agent is
deprived of reasoning power; this will become clearer in the later sections, but you
should be able to see the reason for this: if you can use anything as the value, how
can an inference engine make any judgment at all?

Therefore, a better idea is to always provide typed values if you can. For example,
we can specify that the valid value for the model property has to be strings specified
in the XML schema; see List 4.9.

LIST 4.9
Example of Using Typed Value

: <rdf:Property rdf:ID="model">
<rdfs:domain rdf:resource="#Specification"/>

: </rdf:Property>

1
2
3: <rdfs:range rdf:resource="&xsd;string"/>
4
5: <rdfs:datatype rdf:about="&xsd;string"/>

Line 3 specifies that the property model takes values of type xsd:string (the
full URI is http://www.w3.0rg/2001/XMLSchema#string). We can use this URI
directly in our schema without explicitly indicating that it represents a data type.
However, it is always useful to clearly declare that a given URI represents a data
type. This is done in line 5.

The next example shows that using rdfs:datatype is not only good practice,
but is also necessary in some cases. For instance, let us assume we add a pixel
property to the class Digital, one of the most important thing about a digital camera
being its pixel value (a measure of the quality of the picture). See List 4.10.

84 Introduction to the Semantic Web and Semantic Web Services

LIST 4.10
Property and its Datatype Definition

1: <rdf:Property rdf:ID="pixel">
2 <rdfs:domain rdf:resource="#Digital"/>
3 <rdfs:range rdf:resource="http://www.someStandard.org#MegaPixel" />
4: </rdf:Property>
5: <rdfs:datatype rdf:about="http://www.someStandard.org#MegaPixel">
6 <rdfs:subClassOf
rdf :resouce="http://www.w3.0org/2001/XMLSchema#decimal" />
7: </rdfs:datatype>

When an RDF schema parser reaches line 3, it concludes that the values pixel
(a property of class Digital) can take should come from a resource with
http://www.someStandard.org#MegaPixel as its URI. However, when it reads
line 5, it realizes this URI identifies a data type, and http://www.w3.0rg/2001/
XMLSchema#decimal is the base class of this data type. Therefore, the parser con-
cludes that pixel should always use a typed literal as its value.

Note that when we use rdfs:datatype in our RDF schema document to indicate
a data type, the corresponding RDF instance statements must use rdf:datatype
property as follows:

<model rdf:datatype="http://www.w3.0org/2001/XMLSchema#string">
D70</model>

<pixel rdf:datatype="http://www.someStandard.org#MegaPixel”>6.1
</pixel>

Now that we have two new properties added to our PDF schema document, let us
update Figure 4.1. This gives a new version of our vocabulary, as shown in Figure 4.2.

Note that in Figure 4.2, class Digital has a property called pixel, and also
two subclasses, namely, SLR and Point-And-Shoot. Then, do these subclasses also
have the property pixel? The answer is yes, and the rule is: subclasses always
inherit properties from their base class. Therefore, classes SLR and Point-And-
Shoot both have a property called pixel.

In fact, a class always inherits properties from all the base classes it has. For
instance, class camera is also a base class of SLR, and if we assume Camera has a
property called manufactured_ by, then SLR will have two properties inherited from
its two superclasses: pixel and manufactured_by.

We can also define a property to be a subproperty of another property. This is
done by using rdfs:subPropertyOf. For example, the model property describes
the official name of a camera. However, the manufacturer could sell the same model
using different model names. For instance, a camera sold in North America could
have a different model name when it is sold in Asia. Therefore, we can define another
property, say, officialModel, to be a subproperty of model:

<rdf:Property rdf:ID="officialModel">
<rdfs:subPropertyOf rdf:resource="#model"/>
</rdf:Property>

RDFS, Taxonomy, and Ontology 85

Camera
http://www.someStandard.org#MegaPixel
\ 5
“pixel'u’.‘ - / \
Dlgltal Film
SL/ hd Shoot
“has_SpeCfﬁfff “%muﬁgwned by”
‘;5' '““xmx
Specification Photographer
“model” \
3 Person

¥
http://www.w3.0rg/2001/XMLSchema#string

superClass subClass

property: >

FIGURE 4.2 A simple camera vocabulary (new properties added).

This declares that the property of ficialModel is a specialization of property model.
Property officialModel inherits rdfs:domain and rdfs:range values from its
base property model. However, you can narrow the domain or the range as you wish.

Again, when we define a property, we can use the rdfs: subPropertyOf prop-
erty for different cases. If we define a property without using rdfs: subPropertyOf£,
we are creating a top-level property. If we use rdfs: subPropertyOf once (as shown
in the previous example), we are indicating that the property being defined is a
specialization of another property. If we decide to use multiple rdfs:subProper-
tyof, we are declaring that the property being defined has to be a subproperty of
each of the base properties.

Up to now, we have covered the most important classes and properties in RDF
schema. The last two properties you may encounter in documents are rdfs:label
and rdfs:comment. The former is used to provide a class or property name for
humans and, similarly, rdfs:document provides a human-readable description of
the property or class being defined. One example is shown in List 4.11.

Another issue is the usage of rdfs:XMLLiteral. I recommend that you avoid
using it, and here are the reasons. First, rdfs:XMLLiteral denotes a well-formed
XML string, and it is always used together with rdf:parseType="Literal"; if

86 Introduction to the Semantic Web and Semantic Web Services

LIST 4.11
Example of Using rdfs:label and rdfs:comment

1: <rdf:Property rdf:ID="officialModel">

2 <rdfs:subPropertyOf rdf:resource="#model"/>

3: <rdfs:label xml:lang="EN">officialModelName</rdfs:label>

4 <rdfs:comment xml:lang="EN">this is the official name of the
camera. the manufacturer may use different names when
the camera is sold in different regions/countries.

5: </rdfs:comment>

6: </rdf:Property>

you use rdfs:XMLLiteral in an RDF schema document to define some property,
the RDF statements that describe an instance of this property will have to use
rdf:parseType="Literal". Let us see an example. Suppose we want to define a
new property called features:

<rdf:Property rdf:ID="features">
<rdfs:domain rdf:resource="#Digital"/>
<rdfs:range
rdf:resource="http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#XMLLiteral"/>
</rdf:Property>

Therefore, the property features is used with Digital class, and its value can be
any well-formed XML. An example RDF statement could be:

<features rdf:parseType="Literal">
Nikon D70 is <bold>good!</bold>, also,
</features>

Note that you need to use rdf:parseType="Literal" to indicate this is well-
formed XML content.

Although the content is well-formed XML, in general it does not have the
resource, property, and value structure. And as you have already seen, this
structure is one of the main reasons why tools and agents can “understand” the
content. Therefore, if we use XML paragraph as the value of some property, no tool
will be able to understand the meaning well. So, avoid using XMLLiteral if you can.

A reminder: you can still use rdfs:Literal; it is an untyped literal (string) and
can be useful in some cases.

Up to this point, we have covered the following RDF schema vocabulary:
rdfs:Class, rdfs:subClassOf, rdf:Property, rdfs:domain, rdf:range,
rdfs:datatype, rdfs:subPropertyOf, rdfs:label, and rdfs:comment.

4.3.2 MORE ABOUT PROPERTIES

Now that we have established a good understanding of RDF schema, let us discuss
some deeper issues related to properties.

RDFS, Taxonomy, and Ontology 87

You might have already noticed that properties are defined separately from
classes. Those who are used to the object-oriented world might find this fact uncom-
fortably strange. For instance, in any object-oriented language (such as Java or C++),
you would define a class called DigitalCamera, and then encapsulate several
properties to describe a digital camera. These properties will be defined when you
define the class, and they are defined in the class scope. In other words, they are
considered to be member variables owned by the class being defined and they are
local to the DigitalcCamera class, not directly visible to the outside world.

For the RDF schema, it is quite a different story. You define a class, and very
often you also indicate its relationships with other classes. However, this is it: you
never declare its members, i.e., the properties it may have. For you, a class is just
an entity that has relationships with other existing entities. What is inside this entity,
i.e., its member variables and properties, are unknown.

Actually, you declare properties separately and associate them with classes if
you wish to do so. In other words, properties are never owned by any class, they
are never local to any class, and if you do not associate a given property with any
class, this property is independent and can be used to describe any class.

The key question now is, what is the reason behind this? What is the advantage
of separating the class and property definitions? Before reading on, think about it;
you should be able to figure out the answer by now.

The answer is Rule #3 that we discussed in Chapter 3. Let me repeat it here:

Rule #3: The most exciting one!

I can talk about resource at my will, and if I chose to use an existing URI to identify
the resource I am talking about, then the following is true:

1. The resource I am talking about and the resource already identified by this
existing URI represent exactly the same resource.

2. Everything I have said about this resource is considered to be additional
knowledge about that resource.

We have already seen why this rule is important: it makes the distributed information
spread all over the Internet machine-processable. A hypothetical example is pre-
sented in the previous chapter to show that such an application is possible.

Back to the world of RDF schema: the separation of the class and property
definitions is just an implementation of this rule. The final result is that the agent
or tool we use will have more power to automatically process the distributed infor-
mation, together with a stronger inferencing engine.

For instance, someone else could create another RDF schema document with a
new property defined, say, aperture, and associate it with our SLR class by using
http://www.yuchen.net/photography/Camera.rdfs#SLR as its URIL This is an
implementation of rule #3. Anyone, anywhere, and anytime can talk about a resource
by adding more properties to it. Now an automatic agent can collect all these
statements distributed over different Web pages, and its reasoning power is enhanced.
I leave it to you to come up with an example to show why reasoning power is
enhanced with this extra knowledge. Clearly, if the definitions of class and property
were not separate, this would not have been possible.

88 Introduction to the Semantic Web and Semantic Web Services

The next feature of property is not as exciting as the aforementioned one, but it
is an important programming trick you should know. Let us modify the owned_by
property as follows:

<rdf:Property rdf:ID="owned by">
<rdfs:domain rdf:resource="#Digital"/>
<rdfs:domain rdf:resource="#Film"/>
<rdfs:range rdf:resource="#Photographer"/>
</rdf:Property>

If we define owned_by property like this, we are asserting that owned_by is to be used
with instances that are simultaneously digital cameras and film cameras. Clearly, such a
camera has not been invented yet. Actually, we wanted to express the fact that a photog-
rapher can own a digital camera, or film camera, or both. How do we accomplish this?

Given that a subclass will inherit all the properties associated with its base class,
we can associate the owned_by property with the base class:

<rdf:Property rdf:ID="owned by">
<rdfs:domain rdf:resource="#Camera"/>
<rdfs:range rdf:resource="#Photographer"/>
</rdf:Property>

As both Digital and Film are subclasses of Camera, they all inherit the
owned_by property. Now we can use the owned_by property with the Digital class
or the Film class, and the problem is solved.

4.3.3 XML ScHEmMA AND RDF ScHEmA

We have discussed the relationship between RDF and XML in Chapter 3, and later
in this book you will see more and more reasons why XML alone is not enough to
make the Semantic Web vision a reality. An equally important question is the
relationship between XML and RDF schemas. We will cover this topic in this section.

First of all, the purpose of XML schema is to validate an XML document; i.e.,
to ensure its syntax is legal. It accomplishes this by defining the allowed structure
and data types of an XML document. List 4.12 is a simple XML schema.

LIST 4.12
Simple XML Schema Example

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd = "http://www.w3c.org/2001/XMLSchema">
<xsd:element name = "DigitalCamera">
<xsd:complexType>
<xsd:sequence>
<xsd:element name = "model" type = "xsd:string"
maxOccurs = "unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

RDFS, Taxonomy, and Ontology 89

Based on the preceding schema, a valid XML document would be similar to the
one shown in List 4.13.

LIST 4.13
An XML Document Based on the Schema Described in List 4.12

<?xml version="1.0" encoding="UTF-8"?>

<DigitalCamera
xmlns:xsi = "http://www.w3c.org/2001/XMLSchema-Instance"
xsi:noNameSpaceSchemalocation = "http://www.Dot.com/mySchema.xsd">

<model>Nikon D70</model>

<model>Dikon D50</model>

<model>Canon EOS 20D</model>
</DigitalCamera>

This is pretty much all there is to say about XML schema. Again, it is all about
syntax and is intended to validate an XML instance document created by following
the syntax specified by the XML schema document.

On the other hand, RDF schema is an extension of RDF; it provides the vocab-
ulary that can be used by the RDF instance statements. It defines the classes and
the relationships between them. It also defines properties and associates them with
the classes. The final result is a vocabulary that can be used to describe knowledge,
and it has nothing to do with validation in any sense.

Going one step further, RDF schema is all about semantics. By now you should
realize how semantics is expressed in RDF schemas. Let us again summarize it using
the following two important points:

* Semantics, or the meaning of a given term, is defined by specifying its
properties and what kinds of objects can be the values of these properties.

* Semantics can be understood by a machine by following the structure of
“resource-property-propertyvalue.”

As long as these design guidelines are adhered to, an automatic and large-scale
agent can be constructed to help accomplish some really exciting goals.

4.4 THE CONCEPTS OF ONTOLOGY AND TAXONOMY
4.4.1 WHAT 1s ONTOLOGY?

Now seems to be the correct moment to talk about the concept of onfrology. The
truth is, we have already built one; the vocabulary in Figure 4.2 is an ontology.

There are many definitions of ontology, and perhaps each of these views ontology
from a different perspective. In the world of the Semantic Web, let us use the
operational definition of ontology from W3C’s OWL Requirements Documents (you
will learn all about Web Ontology Language (OWL) in the Chapter 5):

90 Introduction to the Semantic Web and Semantic Web Services

An ontology defines the terms used to describe and represent an area of knowledge. [33]

There are several aspects of this definition that need to be clarified. First, this
definition states that ontology is used to describe and represent an area of knowledge.
In other words, ontology is domain specific; it is not there to represent all knowledge,
but an area of knowledge. A domain is simply a specific subject area or sphere of
knowledge, such as photography, medicine, real estate, education, etc.

Second, ontology contains terms and the relationships among these terms.
Terms are often called classes, or concepts; these words are interchangeable. The
relationships between these classes can be expressed by using a hierarchical
structure: superclasses represent higher-level concepts and subclasses represent
finer concepts, and the finer concepts have all the attributes and features that the
higher concepts have.

Third, besides the aforementioned relationships among the classes, there is
another level of relationship expressed by using a special group of terms: properties.
These property terms describe various features and attributes of the concepts, and
they can also be used to associate different classes together. Therefore, the relation-
ships among classes are not only superclass or subclass relationships, but also
relationships expressed in terms of properties.

To summarize, an ontology has the following properties:

e It is domain specific.
e It defines a group of terms in the given domain and the relationships
among them.

By clearly defining terms and the relationships among them, an ontology encodes
the knowledge of the domain in such a way that it can be understood by a computer.
This is the basic purpose of an ontology.

In the world of the Semantic Web, you may encounter another concept: taxon-
omy. Taxonomy and ontology are quite often used interchangeably; however, they
are different concepts. As discussed earlier, ontology defines not only the classes
but also their properties. It further indicates the type of values these properties may
have and what classes they may be associated with, thereby creating sophisticated
relationships among the classes. On the other hand, taxonomy mainly concerns itself
with classification issues — not the properties — to express further constraints and
relationships. For instance, if we get rid of all the properties defined in Figure 4.2,
it will be termed a taxonomy and not an ontology.

4.4.2 OUR camera ONTOLOGY

As we mentioned earlier, RDF schema is a language for building ontologies, and
we already built one during the course of this chapter. It is expressed in Figure 4.2
and from now on, we will call it the camera ontology.

The current version of the camera ontology is shown in List 4.14. This is our
first ontology using RDF schema, and it is expressed in Figure 4.2 in graphical form.

RDFS, Taxonomy, and Ontology

91

LIST 4.14
Our Camera Ontology Using RDFS

//
//
//
//
1:
2:
3:
4:
//
//
//

//

Camera.rdfs
our camera ontology

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xml:base="http://www.yuchen.net/photography/Camera.rdfs">

classes definitions

<rdfs:Class rdf:ID="Camera">
</rdfs:Class>
<rdfs:Class rdf:ID="Person">
</rdfs:Class>
<rdfs:Class rdf:ID="Digital">
<rdfs:subClassOf rdf:resource="#Camera"/>
</rdfs:Class>
<rdfs:Class rdf:ID="Film">
<rdfs:subClassOf rdf:resource="#Camera"/>
</rdfs:Class>
<rdfs:Class rdf:ID="SLR">
<rdfs:subClassOf rdf:resource="#Digital"/>
</rdfs:Class>
<rdfs:Class rdf:ID="Point-And-Shoot">
<rdfs:subClassOf rdf:resource="#Digital"/>
</rdfs:Class>
<rdfs:Class rdf:ID="Photographer">
<rdfs:subClassOf rdf:resource="#Person"/>
</rdfs:Class>
<rdfs:Class rdf:ID="Speicifications">
</rdfs:Class>

property definitions

<rdf:Property rdf:ID="has_spec">
<rdfs:domain rdf:resource="#SLR"/>
<rdfs:range rdf:resource="#Specifications"/>
</rdf:Property>
<rdf:Property rdf:ID="owned_by">
<rdfs:domain rdf:resource="#SLR"/>
<rdfs:range rdf:resource="#Photographer"/>
</rdf:Property>
<rdf:Property rdf:ID="model">
<rdfs:domain rdf:resource="#Specification"/>
<rdfs:range

92 Introduction to the Semantic Web and Semantic Web Services

rdf:resource="http://www.w3.0rg/2001/XMLSchema#string" />
37: </rdf:Property>
38: <rdfs:datatype rdf:about="http://www.w3.0rg/2001/XMLSchema

#string"/>
39: <rdf:Property rdf:ID="pixel">
40: <rdfs:domain rdf:resource="#Digital"/>
41: <rdfs:range rdf:resource="http://www.someStandard.org

#MegaPixel" />
42: </rdf:Property>
43: <rdfs:datatype rdf:about="http://www.someStandard.org#MegaPixel">
44: <rdfs:subClassOf

rdf :resouce="http://www.w3.0rg/2001/XMLSchema#decimal" />
45: </rdfs:datatype>
46: </rdf:RDF>

4.4.3 THe BeNEFITS OF ONTOLOGY

We can summarize the benefits of ontology as follows (and you should be able
to come up with most of these benefits yourself):

e It provides a common and shared understanding/definition about certain
key concepts in the domain.

e It provides a way to reuse domain knowledge.

e It makes the domain assumptions explicit.

* Together with ontology description languages (such as RDF schema), it
provides a way to encode knowledge and semantics such that machines
can understand.

» It makes automatic large-scale machine processing possible.

Among all these benefits, we in fact pay more attention to the fourth one in the
preceding list. To convince ourselves about these exciting benefits, let us take another
look at our camera ontology to see how it can make our machine more intelligent.
This will lead us to the next section.

In the next section, not only you will see more reasoning power provided by
our camera ontology, but you will also find aspects that can be improved. This points
to another new building block called OWL, the details of which will be presented
in Chapter 5.

4.5 ANOTHER LOOK AT INFERENCING BASED
ON RDF SCHEMA

4.5.1 SimpLE, YET POWERFUL

Earlier in this chapter, we used an example to show you how reasoning is done by
using the camera ontology (we called it camera vocabulary then). In this section,
we present this reasoning ability in a more formal way, together with the extra
reasoning examples that we did not cover in the previous section.

RDFS, Taxonomy, and Ontology 93

With the help of the camera ontology, a smart agent can accomplish reasoning
in the following ways:

1. Understand a resource’s class type by reading the property’s rdfs :domain
tag: When we define a property P, we normally use rdfs:domain to
specify exactly which class this property P can be used to describe; let
us use C to denote this class. Now, for a given resource with a specific
URI, if the agent detects that property P is indeed used to describe this
resource, the agent can then conclude that the resource represented by
this particular URI must be an instance of class C. An example of this
type of reasoning was presented in the previous section.

2. Understand a resource’s class type by reading the property’s rdfs:range
tag: When we define a property P, we normally use rdfs:range to specify
exactly what are the possible values this property can assume. Sometimes,
this value can be a typed or untyped literal, and sometimes it has to be
an instance of a given class C. Now, when parsing a resource, if the agent
detects that property P is used to describe this resource, and the value of
P in this resource is represented by a specific URI pointing to another
resource, the agent can then conclude that the resource represented by
this particular URI must be an instance of class C. An example of this
type of reasoning was presented in the previous section, too.

3. Understand a resource’s superclass type by following the class hierarchy
described in the ontology: This can be viewed as extension of the preced-
ing two reasoning scenarios. In both these cases, the final result is that
the class type of some URI (resource) is successfully identified. Now the
agent can scan the class hierarchy defined in the ontology. If the identified
class has one or more superclasses defined in the ontology, then the agent
can conclude that this particular URI is not only an instance of this
identified class, but also instance of all the superclasses. Again, an example
of this reasoning was also presented in an earlier section.

4. Understand more about the resource by using the rdfs:subPropertyOf
tag: Let us use an example to illustrate this reasoning. Suppose we have
defined the following property:

<rdf:Property rdf:ID="parent">
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="#Person"/>
</rdf:Property>
<rdf:Property rdf:ID="mother">
<rdfs:subClassOf rdf:resouce="#parent”/>
</rdf:Property>

This defines two properties, namely, parent and mother; also, mother is a sub-
property of parent. Assume we have a resource in the RDF statement document:

<Person rdf:ID="Liyang">
<mother>
<Person rdf:about="#Zaiyun"/>

94 Introduction to the Semantic Web and Semantic Web Services

</mother>
</Person>

When parsing this statement, the agent realizes that Liyang’s mother is Zaiyun.
To go one step further, as mother is a subproperty of parent, it then concludes that
Liyang’s parent is also zaiyun. This can be very useful in some cases.

The foregoing examples are the four main ways in which agents can make
inferences based on the given ontology (and certainly the instance file). These are
indeed simple, yet very powerful already, and made possible mainly by the following:

* All this reasoning power is made possible by having an ontology defined.
* The resource-property-propertyVvalue structure always ensures that
reasoning can be conducted in an efficient way, even on a large scale.

4.5.2 Goob, BETTER AND BEsT: MORE IS NEEDED

Although RDF schema is quite impressive already, there are still gaps in it. For
example, what if we have two classes representing the same concept? More precisely,
we have an SLR class in our camera ontology; if there is another ontology that uses
Single-Lens-Reflex as the class name, these two classes would represent the same
concept. Reasoning power would be greatly enhanced if we could somehow indicate
that these two classes are equivalent. However, using RDF schema, it is not possible
to accomplish this.

Another obvious example is that there are no cardinality constraints available
using RDF schema. For example, pixel is a property that is used to describe the
image size of a digital camera and for a particular camera, there is only one pixel
value. However, in your RDF document, you can use as many as pixel properties
on a given digital camera.

Therefore, there is indeed a need to extend RDF schema to allow for the
expression of complex relationships among classes and the precise constraints on
specific classes and properties. Further, we need a more advanced language that will
be able to perform the following functions, among others:

» Express relationships among classes defined in different documents across
the Web

* Construct new classes by unions, intersections, and complements of other
existing classes

* Add constraints on the number and type for properties of classes

e Determine if all members of a class will have a particular property, or if
only some of them might

This new language is called OWL, and it is the main topic of Chapter 5.

