5 Web Ontology
Language: OWL

OWL (Web Ontology Language) is the latest recommendation of W3C [34], and is
probably the most popular language for creating ontologies today. It is also the last
technical component we need to familiarize ourselves with. The good news is that
it is built on RDF schema; as you have already established a solid understanding of
RDF schema, much of the material here is going to look familiar to you.

OWL = RDF schema + new constructs for expressiveness

Therefore, all the classes and properties provided by RDF schema can be used
when creating an OWL document.

OWL and RDF schema have the same purpose: to define classes, properties, and
their relationships. However, compared to RDF schema, OWL gives us the capability
to express much more complex and richer relationships. The final result is that you
can construct agents or tools with greatly enhanced reasoning ability.

Therefore, we often want to use OWL for the purpose of ontology development;
RDF schema is still a valid choice, but its obvious limitations compared to OWL
will always make it a second choice.

We developed a small camera ontology using RDF schema in Chapter 4 (see
Figure 4.2). In this chapter, we are going to use OWL to rewrite the ontology. As
we will be using OWL, new features will be added and, therefore, a new ontology
with much more knowledge expressed is the result. However, the taxonomy (classes
and class hierarchy) will still be the same.

5.1 USING OWL TO DEFINE CLASSES: LOCALIZE
GLOBAL PROPERTIES

Our goal in this chapter is to understand OWL. We will accomplish this by rewriting
our camera ontology. Let us start with class definitions.

In RDF schema, the root class of everything is rdfs:resource. More specifi-
cally, this root class has the following URI:

http://www.w3.0rg/2001/01/rdf-schema#resource

In the world of OWL, the owl:Thing class is the root of all classes; its URI is
as follows:

http://www.w3.0rg/2002/07/owl#Thing

95

96 Introduction to the Semantic Web and Semantic Web Services

owl:Thing

| rdfs:Resource |

| rdfs:Class |

owl:Class

FIGURE 5.1 OWL top class structure.

Clearly, owl represents the namespace for OWL,; i.e.,
http://www.w3.0rg/2002/07/owl#

Also, OWL has created a new class called owl:Class to define classes in OWL
documents; it is a subclass of rdfs:Class. The relationship between all these top
classes is summarized in Figure 5.1.

To define one of our camera ontology top classes, such as Camera, you can do
the following:

<owl:Class rdf:ID="Camera">
</owl:Class>

And the following is an equivalent format:

<owl:Class rdf:ID="Camera">
<rdfs:subClassOf
rdfs:resource="http://www.w3.0rg/2002/07/owl#Thing" />
</owl:Class>

Therefore, to define all the classes in our camera ontology, List 5.1 will be good
enough.

LIST 5.1
Class Definitions in Camera Ontology Using OWL

//

// Camera.owl

//

1l: <?xml version="1.0"?>

2: <rdf:RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#"
xml:base="http://www.yuchen.net/photography/Camera.owl">

The Web Ontology Language 97

//

// classes definitions

//

6: <owl:Class rdf:ID="Camera">
7: </owl:Class>

8: <owl:Class rdf:ID="Person">
9: </owl:Class>

10: <owl:Class rdf:ID="Digital">
11: <rdfs:subClassOf rdf:resource="#Camera"/>
12: </owl:Class>

13: <owl:Class rdf:ID="Film">
14: <rdfs:subClassOf rdf:resource="#Camera"/>
15: </owl:Class>

16: <owl:Class rdf:ID="SLR">
17: <rdfs:subClassOf rdf:resource="#Digital"/>
18: </owl:Class>

19: <owl:Class rdf:ID="PointAndShoot">
20: <rdfs:subClassOf rdf:resource="#Digital"/>
21: </owl:Class>

22: <owl:Class rdf:ID="Photographer">
23: <rdfs:subClassOf rdf:resource="#Person"/>
24: </owl:Class>

25: <owl:Class rdf:ID="Specifications">
26: </owl:Class>

//
// property definitions: coming up

1/

It looks as if our job is done. We have just finished using OWL to define all the
classes used in our camera ontology (note that we have changed the class Point-
And-Shoot to a new name, PointAndShoot because some valuators do not like
hyphens in the middle of class names).

True, but the preceding list defines a very simple class hierarchy. OWL offers
much greater expressiveness when it comes to defining classes. Let us explore these
features one by one. To show how these new features are used, we also have to
change our camera ontology from time to time.

5.1.1 owl:allValuesFrom

In our current camera ontology, written using RDFS (List 4.14), we defined a
property called owned_by and associated it with two classes, SLR and Photographer,
to express the fact that SLR is owned_by Photographer.

98 Introduction to the Semantic Web and Semantic Web Services

Camera
http://www.someStandard.org#MegaPixel
...
Digital Film
e / \
T ———————— SLR PointAndShoot
“bwped by” Person
5 "
Specification ExpensiveSLR Photographer
é“model"
; |Professiona|| | Amateur

v
http://www.w3.0rg/2001/XMLSchema#string

superClass subClass

Property: >

FIGURE 5.2 A more complex camera ontology.

Compared to RDFS, OWL has much more powerful expressiveness. To see this,
suppose we now want to express the following fact: SLRs, especially the expensive
ones, are normally used by professional photographers (just the body of some high-
end digital SLRs can cost as much as $5000). To further express this idea, we can
create a subclass of SLR, called ExpensiveSLR, and two subclasses of photographer,
Professional and Amateur. The current ontology is shown in Figure 5.2.

However, this does not solve our problem. Recall what we learned about RDF
schema in Chapter 4. The property owned by has SLR as its rdfs:domain and
Photographer as its rdfs:value; given that ExpensiveSLR is a subclass of SLR
and Professional and Amateur are both subclasses of Photographer, these new
subclasses all inherit the owned_by property. Therefore, we did not exclude the
following:

ExpensiveSLR owned by Amateur

How do we modify the definition of ExpensiveSLR to ensure that it can be
owned only by Professional? OWL uses owl:allvaluesFrom to solve this prob-
lem, as shown in List 5.2.

The Web Ontology Language 99

LIST 5.2
owl:allValuesFrom Example

: <owl:Class rdf:ID="ExpensiveSLR">
: <rdfs:subClassOf rdf:resource="#SLR"/>

: <rdfs:subClassOf>

: <owl:Restriction>

: <owl:onProperty rdf:resource="#owned_by"/>

: <owl:allValuesFrom rdf:resource="#Professional"/>
: </owl:Restriction>

: </rdfs:subClassOf>

1
2
3
4
5
6
7
8
9: </owl:Class>

We can interpret this definition as follows:

Here is a definition of class ExpensiveSLR; it is a subclass of SLR and has a property
named owned_by, and only an instance of class Professional can be the value of
this property.

It takes a while to get used to the structure between lines 3 and 8. Line 3 (together
with line 8) states that ExpensiveSLR is a subclass of class x; class x is defined by
the owl :Restriction structure in lines 4 to 7. In the world of OWL, owl:Restric-
tion is frequently used to specify an anonymous class. In our case, lines 4 to 7
define a class that has owned_by as a property, and only an instance of Professional
can be its value.

5.1.2 ENHANCED REASONING POWER 1

Let us always ask the following question from now on: What kind of inferencing power
does OWL give us through owl:allvaluesFrom? The following is the answer:

OWL inferencing power 1

The agent sees this:

<ExpensiveSLR rdf:ID="Nikon D200">
<owned_by rdf:resource="http://www.yuchen.net/people#Liyang"/>
<owned_by rdf:resource="http://www.yuchen.net/people#Jin"/>
</ExpensiveSLR>

The agent understands:

Both Liyang and Jin are Professionals (not Photographers or
Amateurs).

In the later sections, we will always summarize the enhanced reasoning power
using the preceding format.
5.1.3 owl:someValuesFrom AND owl:hasValue

In the preceding section, we used owl:allValuesFrom to ensure that only Profes-
sionals can own ExpensiveSLRS. Now, let us loosen this restriction by allowing

100 Introduction to the Semantic Web and Semantic Web Services

some Amateurs as well to buy and own ExpensiveSLRs. However, we still require
that for a given expensive SLR, at least one of its owners has to be a Professional.
In other words, ExpensiveSLR can be owned by either Professionals or
Amateurs, but it has to be owned by at least one Professional. OWL uses
owl:some-ValuesFrom to express this idea, as shown in List 5.3.

LIST 5.3
owl :someValuesFrom Example

: <owl:Class rdf:ID="ExpensiveSLR">

: <rdfs:subClassOf rdf:resource="#SLR"/>

: <rdfs:subClassOf>

: <owl:Restriction>

: <owl:onProperty rdf:resource="#owned_by"/>

: <owl:someValuesFrom rdf:resource="#Professional"/>
: </owl:Restriction>
: </rdfs:subClassOf>

1
2
3
4
5
6
7
8
9: </owl:Class>

This can be interpreted as follows:

A class called ExpensiveSLR is defined. It is a subclass of SLR, and it has a property
called owned_by. Furthermore, at least one value of owned_by property is an instance
of Professional.

Another way in which OWL localizes a global property in the context of a given
class is to use owl:hasvalue. Consider the following scenario, in which owl:has-
value will be needed. We have created a class called ExpensiveSLR to express the
knowledge that there are expensive digital cameras. We then enhanced this idea by
saying that these expensive cameras are mainly owned by professional photographers.
This is a good way of expressing this knowledge, but we can use a more direct way
to accomplish the same result, by creating a property called expensiveOrNot, like this:

<owl:DatatypeProperty rdf:ID="expensiveOrNot">
<rdfs:domain rdf:resource="#Digital"/>
<rdfs:range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string" />
</owl:DatatypeProperty>

As we are not defining properties in this section, let us not worry about the
syntax for now; just understand that this defines a property called expensiveOrNot,
which is used to describe Digital. Its value will be a string of your choice; for
instance, you can assign expensive Or inexpensive as its value.

Clearly, SLR, PointAndshoot, and ExpensiveSLR are all subclasses of Digital;
therefore, they can all use the expensiveOrNot property however they want. In
other words, expensiveOrNot, as a property, is global. Now, in order to directly

The Web Ontology Language 101

express the knowledge that an ExpensiveSLR iS expensive, we can constrain the
value of expensiveOrNot to be always expensive when used with ExpensiveSLRs.
We can use owl:hasValue to implement this idea, as shown in List 5.4. This defines
the ExpensiveSLR as follows:

A class called ExpensiveSLR is defined. It is a subclass of SLR, and every instance
of ExpensiveSLR has an expensiveOrNot property whose value is expensive.

LIST 5.4
owl:hasValue Example

1: <owl:Class rdf:ID="ExpensiveSLR">
2: <rdfs:subClassOf rdf:resource="#SLR"/>
3: <rdfs:subClassOf>
4: <owl:Restriction>
5: <owl:onProperty rdf:resource="#expensiveOrNot"/>
6: <owl:hasValue rdf:datatype="http://www.w3.org/2001/
XMLSchema#string">expensive
</owl:hasValue>
7: </owl:Restriction>
8: </rdfs:subClassOf>
9: </owl:Class>

On the other hand, instances of SLR or PointAndShoot can take whatever
expensiveOrNot value they want (i.e., expensive or inexpensive), indicating
that they can be either expensive or inexpensive. This is exactly what we want.

It is now a good time to take a look at the differences between these three properties.
Whenever we use owl:allvaluesFrom, it is equivalent to declaring that “all the values
of this property must be of this type, but it is all right if there are no values at all.”
Therefore, the property instance does not even have to appear. On the other hand, using
owl:someValuesFrom is equivalent to saying that “there must be some values for this
property, and at least one of these values has to be of this type. It is okay if there are
other values of other types.” Clearly, imposing an owl:somevValuesFrom restriction
on a property implies that this property has to appear at least once, whereas an
owl:allValuesFrom restriction does not require the property to show up at all.

Finally, owl:hasvalue says, “regardless of how many values a class has for a
particular property, at least one of them must be equal to the value that you specify.”
It is therefore very much the same as owl:someValuesFrom except that it is more
specific, because it requires a particular instance instead of a class.

5.1.4 ENHANCED REASONING POWER 2

As owl:hasValue and owl:someValuesFrom are quite similar, let us assume
ExpensiveSLR is defined by using owl:someValuesFrom. Then, what additional
reasoning power does this give us?

102 Introduction to the Semantic Web and Semantic Web Services

OWL inferencing power 2
The agent sees this:

<ExpensiveSLR rdf:ID="Nikon D200">
<owned_by rdf:resource="http://www.yuchen.net/people#Liyang"/>
<owned_by rdf:resource="http://www.yuchen.net/people#Jin"/>
</ExpensiveSLR>

The agent understands the following:
Either Liyang or Jin (or both) is Professional.

In this section, we have discussed several ways to define classes by imposing
constraints on a global property. As a result, the expressiveness of our camera ontology
has been greatly enhanced, and more reasoning power is gained by this enhancement.

5.1.5 CARDINALITY CONSTRAINTS

Another way to define a class by imposing restrictions on properties is through cardi-
nality considerations. For example, we can say we want exactly one person to own
ExpensiveSLR, as shown in List 5.5. Note that you need to specify that the literal “1”
is to be interpreted as a nonnegative integer, using the rdf :datatype property.

LIST 5.5
owl:cardinality Example

1 <owl:Class rdf:ID="ExpensiveSLR">
2 <rdfs:subClassOf rdf:resource="#SLR"/>
3 <rdfs:subClassOf>
4: <owl:Restriction>
5 <owl:onProperty rdf:resource="#owned_by"/>
6 <owl:cardinality
rdf:datatype="http://www.w3.0rg/2001/XMLSchema
#nonNegativeInteger">
1
</owl:cardinality>
9: </owl:Restriction>
10: </rdfs:subClassOf>
11: </owl:Class>

Similarly, if we want to express the idea that at least one person should own
ExpensiveSLR, we can follow List 5.6.

LIST 5.6
owl:minCardinality Example

1: <owl:Class rdf:ID="ExpensiveSLR">
<rdfs:subClassOf rdf:resource="#SLR"/>

The Web Ontology Language 103

3: <rdfs:subClassOf>

4: <owl:Restriction>

5: <owl:onProperty rdf:resource="#owned_by"/>

6: <owl:minCardinality

rdf:datatype="http://www.w3.0rg/2001/XMLSchema

#nonNegativeInteger">

7: 1

8: </owl:minCardinality>

9: </owl:Restriction>

10: </rdfs:subClassOf>

11: </owl:Class>

You can certainly use owl:maxCardinality to specify the maximum number
of people who can own the same camera. It is also possible to use owl:minCar-
dinality and owl:maxCardinality at the same time to specify a range, as shown
in List 5.7. Clearly, this asserts that at least one person, and at most two people,
can own the camera. As you can see, the expressiveness in OWL is indeed greatly
enhanced.

LIST 5.7
Using owl :maxCardinality and owl:minCardinality to Specify a Range

1 <owl:Class rdf:ID="ExpensiveSLR">

2 <rdfs:subClassOf rdf:resource="#SLR"/>

3 <rdfs:subClassOf>

4: <owl:Restriction>

5 <owl:onProperty rdf:resource="#owned by"/>

6 <owl:minCardinality

rdf:datatype="http://www.w3.0rg/2001/XMLSchema

#nonNegativeInteger">

1
8: </owl:minCardinality>
9: <owl:maxCardinality

rdf:datatype="http://www.w3.0rg/2001/XMLSchema
#nonNegativeInteger">

10: 2

11: </owl:maxCardinality>
12: </owl:Restriction>

10: </rdfs:subClassOf>

11: </owl:Class>

5.1.6 ENHANCED ReEASONING Power 3

To see how the preceding cardinality constraints can help reasoning, let us assume
that the ExpensiveSLR class is defined by using the owl:cardinality (exact
number) property:

104 Introduction to the Semantic Web and Semantic Web Services

OWL inferencing power 3

The agent sees this:

<ExpensiveSLR rdf:ID="Nikon D200">
<owned_by rdf:resource="http://www.yuchen.net/people#Liyang"/>
<owned_by rdf:resource="http://www.yuchen.net/people#Jin"/>
</ExpensiveSLR>

The agent understands the following:

Liyang and Jin must be the same person (because owl:cardinalityis 1).

5.1.7 UppATING Our Camera ONTOLOGY

Before we move on, as we have created several new classes, i.e., Professional,
Amateur, and ExpensiveSLR (let us not worry about properties for now), we can
update our camera ontology as shown in List 5.8. Note that for experimental reasons
we have imposed many different constraints on the owned_by property when defining
the ExpensivesLR class, but in our final camera ontology, we will create the Expen-
siveSLR class by stating that only Professionals can own it.

LIST 5.8

Updated Camera Ontology

//

// Camera.owl

// all the classes definitions are final!!

//

1: <?xml version="1.0"?>

2: <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
4: xmlns:owl="http://www.w3.0rg/2002/07/owl#"

5: xml:base="http://www.yuchen.net/photography/Camera.owl">
//

// classes definitions

//

6 <owl:Class rdf:ID="Camera">

7: </owl:Class>

8: <owl:Class rdf:ID="Person">

9: </owl:Class>

10: <owl:Class rdf:ID="Digital">

11: <rdfs:subClassOf rdf:resource="#Camera"/>

12: </owl:Class>

The Web Ontology Language 105

13:
14:
15:

16:
17:
18:

19:
20:
21:

22:
23:
24:

25:
26:

27:
28:
29:

30:
31:
32:

33:
34:
35:
36:
37:
38:
39:
40:
41:

//
//
//

<owl:Class rdf:ID="Film">
<rdfs:subClassOf rdf:resource="#Camera"/>
</owl:Class>

<owl:Class rdf:ID="SLR">
<rdfs:subClassOf rdf:resource="#Digital"/>
</owl:Class>

<owl:Class rdf:ID="PointAndShoot">
<rdfs:subClassOf rdf:resource="#Digital"/>
</owl:Class>

<owl:Class rdf:ID="Photographer">
<rdfs:subClassOf rdf:resource="#Person"/>
</owl:Class>

<owl:Class rdf:ID="Specifications">
</owl:Class>

<owl:Class rdf:ID="Professional">
<rdfs:subClassOf rdf:resource="#Photographer"/>
</owl:Class>

<owl:Class rdf:ID="Amateur">
<rdfs:subClassOf rdf:resource="#Photographer"/>
</owl:Class>

<owl:Class rdf:ID="ExpensiveSLR">
<rdfs:subClassOf rdf:resource="#SLR"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#owned by"/>
<owl:someValuesFrom rdf:resource="#Professional"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

property definitions: coming up...

Up to this point, we have covered the following OWL vocabulary: owl:Thing,
owl:Class, owl:Restriction, owl:allValuesFrom, owl:hasValuesFrom,
owl:hasValue, owl:cardinality, owl:minCardinality, and owl:maxCar-
dinality.

106 Introduction to the Semantic Web and Semantic Web Services

5.2 USING OWL TO DEFINE CLASS: SET OPERATORS
AND ENUMERATION

5.2.1 Ser OPERATORS

The goal of this chapter is to give you an understanding of OWL and to demonstrate
its enhanced reasoning power, instead of giving you a full OWL tutorial. Therefore,
we are not going to dive into the details about set operations in OWL; based on
what you have already learned about OWL, these operations should be quite intuitive
and straightforward. As a summary, OWL includes the following set operations,
based on which you can define new classes:

® owl:intersectionOf
® owl:unionOf

® owl:complementOf

5.2.2 ENUMERATIONS

Enumeration is another brand-new feature that has been added by OWL, and it could
be quite useful in many cases. To see this, let us recall how we defined the Expen-
sivesLR class. So far we have been defining the class ExpensiveSLR by stating
that it has to be owned by a professional photographer, or its expensiveOrNot
property has to take the value expensive, etc. However, this is just a descriptive
way to define ExpensiveSLR; in other words, it asserts that as long as an instance
satisfies all these conditions, it is a member of the ExpensiveSLR class.

A large number of instances could still qualify. In some cases, it will be more
useful to explicitly enumerate the qualified members; this will result in more accurate
semantics for many applications. OWL provides the owl:one0f property for this
(see List 5.9).

LIST 5.9
owl:one0f Example

1 <owl:Class rdf:ID="ExpensiveSLR">

2 <rdfs:subClassOf rdf:resource="#SLR"/>

3 <owl:oneOf rdf:parseType="Collection">

4z <SLR rdf:about="http://www.someNikonSite.com/digital/#D70"/>
5: <SLR rdf:about="http://www.someNikonSite.com/digital/#D200"/>
6 <SLR rdf:about="http://www.someCanonSite.com/digital/#20D"/>
7 // other instances you might have
8 </owl:oneOf>
9 </owl:Class>

Note the syntax; you need to use owl:oneOf together with rdf:parseType to
tell the parser that you are enumerating all the members of the class you are defining.

The Web Ontology Language 107

Up to this point, we have covered the following OWL vocabulary: owl:Thing,
owl:Class, owl:Restriction, owl:allvaluesFrom, owl:hasValuesFrom,
owl:hasValue, owl:cardinality, owl:minCardinality, owl:maxCardinal-
ity, owl:intersectionOf, owl:unionOf, owl:complementOf, and
owl:oneOf.

5.3 USING OWL TO DEFINE PROPERTIES: A RICHER
SYNTAX FOR MORE REASONING POWER

We have finished defining the necessary classes for our project of rewriting the
camera ontology using OWL. It is now time to define all the necessary properties.

Recall that when creating ontologies using RDF schema, we have the following
three ways to describe a property:

¢ rdfs:domain
® rdfs:range
¢ rdfs:subPropertyOf

With just these three methods, however, a smart agent already shows impressive
reasoning power, and more importantly, most of this power comes from the agent’s
understanding of properties (see the last section in Chapter 4).

This shows a simple yet important fact: richer semantics embedded into the
properties will directly result in greater reasoning capabilities. This is why OWL,
besides continuing to use these three methods, has also greatly increased the number
of ways of characterizing a property, as we will see in this section.

The first point to note is that defining properties using OWL is quite different
from defining properties using RDF schema. The general procedure is to first define
the property and then use it to connect one resource with either another resource or
with a typed or untyped value. Recall that in the world of RDF and RDF schema,
rdf:Property is used for both connections. However, OWL uses two different
classes to implement these two different connections, as shown:

e owl:ObjectProperty is used to connect a resource to another resource.
e owl:DatatypePropery is used to connect a resource to an rdfs:Literal
(untyped) or an XML schema built-in data type (typed) value.

Also, owl:0ObjectProperty and owl:DatatypeProperty are both subclasses of
rdf:Property. For example, List 5.10 defines owned_by and expensiveOrNot
properties by using RDF schema. In OWL, these definitions are as shown in List 5.11.

LIST 5.10
Using RDFS to Define Properties

1: <rdf:Property rdf:ID="owned by">
2: <rdfs:domain rdf:resource="#SLR"/>

108 Introduction to the Semantic Web and Semantic Web Services

3: <rdfs:range rdf:resource="#Photographer"/>
4: </rdf:Property>

5: <rdf:Property rdf:ID="expensiveOrNot">

6: <rdfs:domain rdf:resource="#Digital"/>

7: <rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchema#string" />

8: </rdf:Property>

LIST 5.11
Using OWL to Define Properties

1: <owl:ObjectProperty rdf:ID="owned by">

2: <rdfs:domain rdf:resource="#SLR"/>

3: <rdfs:range rdf:resource="#Photographer"/>
4: </owl:0ObjectProperty>

5: <owl:DatatypeProperty rdf:ID="expensiveOrNot">
6: <rdfs:domain rdf:resource="#Digital"/>

7: <rdfs:range

rdf:resource="http://www.w3.0rg/2001/XMLSchema#string" />
8: </owl:DatatypeProperty>

We can now see that except for owl:ObjectProperty and owl:Datatype-
Property, the basic syntax of defining properties in both RDF schema and OWL
is quite similar. In fact, we can now go ahead and define all the properties that appear
in Figure 5.2; after defining these properties, we get an entire camera ontology
written in OWL. (Note that we added a new property, expensiveOrNot, into the
ontology; this property is not shown in Figure 5.2.) Our current (completed) camera
ontology is given in List 5.12.

LIST 5.12
Complete Camera Ontology

//

// Camera.owl

// adding the initial definition for the properties
//

1: <?xml version="1.0"?>

2: <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"

4: xmlns:owl="http://www.w3.0rg/2002/07/owl#"

5: xml:base="http://www.yuchen.net/photography/Camera.owl">
//

// classes definitions

//

The Web Ontology Language 109

10:
11:
12:

13:
14:
15:

16:
17:
18:

19:
20:
21:

22:
23:
24:

25:
26:

27:
28:
29:

30:
31:
32:

33:
34:
35:
36:
37:
38:
39:
40:
41:

//
//
//

42:
43:

<owl:Class rdf:ID="Camera">
</owl:Class>

<owl:Class rdf:ID="Person">
</owl:Class>

<owl:Class rdf:ID="Digital">
<rdfs:subClassOf rdf:resource="#Camera"/>
</owl:Class>

<owl:Class rdf:ID="Film">
<rdfs:subClassOf rdf:resource="#Camera"/>
</owl:Class>

<owl:Class rdf:ID="SLR">
<rdfs:subClassOf rdf:resource="#Digital"/>
</owl:Class>

<owl:Class rdf:ID="PointAndShoot">
<rdfs:subClassOf rdf:resource="#Digital"/>
</owl:Class>

<owl:Class rdf:ID="Photographer">
<rdfs:subClassOf rdf:resource="#Person"/>
</owl:Class>

<owl:Class rdf:ID="Specifications">
</owl:Class>

<owl:Class rdf:ID="Professional">
<rdfs:subClassOf rdf:resource="#Photographer"/>
</owl:Class>

<owl:Class rdf:ID="Amateur">
<rdfs:subClassOf rdf:resource="#Photographer"/>
</owl:Class>

<owl:Class rdf:ID="ExpensiveSLR">
<rdfs:subClassOf rdf:resource="#SLR"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#owned by"/>
<owl:someValuesFrom rdf:resource="#Professional"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

property definitions

<owl:DatatypeProperty rdf:ID="expensiveOrNot">
<rdfs:domain rdf:resource="#Digital"/>

110

44:

45:
46:

47:
48:
49:

50:
51:

52:
53:
54:

55:
56:
57:

58:

59:
60:
61:
62:

63:
64:
65:
66:

67:

Introduction to the Semantic Web and Semantic Web Services

<rdfs:range
rdf :resource="http://www.w3.0rg/2001/XMLSchema#string" />
</owl:DatatypeProperty>
<rdfs:datatype
rdf:about="http://www.w3.0rg/2001/XMLSchema#string" />

<owl:DatatypeProperty rdf:ID="model">
<rdfs:domain rdf:resource="#Specifications"/>
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchema#string" />
</owl:DatatypeProperty>
<rdfs:datatype
rdf:about="http://www.w3.0rg/2001/XMLSchema#string" />

<owl:DatatypeProperty rdf:ID="pixel">
<rdfs:domain rdf:resource="#Digital"/>
<rdfs:range
rdf:resource="http://www.someStandard.org#MegaPixel" />
</owl:DatatypeProperty>
<rdfs:datatype rdf:about="http://www.someStandard.org#MegaPixel">
<rdfs:subClassOf
rdf:resource="http://www.w3.0rg/2001/XMLSchema#decimal" />
</rdfs:datatype>

<owl:ObjectProperty rdf:ID="has_spec">
<rdfs:domain rdf:resource="#SLR"/>
<rdfs:range rdf:resource="#Specifications"/>
</owl:0bjectProperty>

<owl:ObjectProperty rdf:ID="owned_by">
<rdfs:domain rdf:resource="#SLR"/>
<rdfs:range rdf:resource="#Photographer"/>
</owl:0bjectProperty>

</rdf :RDF>

At this point, we have just finished rewriting the ontology using OWL by adding

the property definitions. OWL provides much richer features related to property
definitions than we have employed thus far. We will discuss these features in detail
in the next several sections, but here is a quick look at them:

* Property can be symmetric.

* Property can be transitive.

e Property can be functional.

* Property can be inverse functional.

* Property can be the inverse of another property.

The Web Ontology Language 111

5.4 USING OWL TO DEFINE PROPERTIES: PROPERTY
CHARACTERISTICS

5.4.1 SYMMETRIC PROPERTIES

A symmetric property describes the situation in which, if resource R1 is connected
to resource R2 by property P, then resource R2 is also connected to resource R1 by
the same property. For instance, we can define a property friend_with (for Person
class), and if person A is friend_with person B, then person B is certainly
friend_with person A. This is shown in List 5.13.

LIST 5.13
Example of Symmetric Property

1: <owl:ObjectProperty rdf:ID="friend with">
2: <rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl
#SymmetricProperty"/>
3: <rdfs:domain rdf:resource="#Person"/>
4: <rdfs:range rdf:resource="#Person"/>
5: </owl:ObjectProperty>

It is line 2 that indicates this property is a symmetric property. Adding this line
means this: friend_with is a property. In our case, it is used to describe instances
of class Person; its values are also instances of Person; and it is a symmetric

property.
5.4.2 ENHANCED REASONING POwWER 4

OWL inferencing power 4

The agent sees this:

<Photographer rdf:ID=" http://www.yuchen.net/people#Liyang">
<friend with rdf:resource="http://www.yuchen.net/people#Jin"/>
</Photographer>

The agent understands:

Since Liyang is friend with Jin, Jin must be friend with Liyang.

Note that the value of the rdfs:domain property used when defining
friend with is Person; given that Photographer is a subclass of Person, it
inherits the friend_with property. Therefore, when you describe a resource whose
type is Photographer, you can use the friend with property.

112 Introduction to the Semantic Web and Semantic Web Services

5.4.3 TRANSITIVE PROPERTIES

A transitive property describes the situation in which, if a resource R1 is connected
to resource R2 by property P, and resource R2 is connected to resource R3 by the
same property, then resource R1 is also connected to resource R3 by property P.

This can be a very useful feature in some cases. For our camera ontology, we
created a class called ExpensiveSLR and another property called expensiveOrNot
because photography is a very expensive hobby for many people. Given this, a better
rule to decide which camera to buy is to get the one that offers a better ratio of quality
to price. Consider an expensive camera having very superior quality and performance;
the ratio could be high. On the other hand, a PointAndShoot camera, with a very
appealing price, may not offer you much room to discover your creative side. We
would like to capture this part of our knowledge in this specific domain by using a
property that should be able to provide a way to compare two different cameras.

Let us define another new property called betterQualityPriceRatio; we will
also declare it to be a transitive property: if camera A has betterQualityPriceRatio
than camera B, and camera B has betterQualityPriceRatio than camera c, it should
be true that camera A has betterQualityPriceRatio than camera c. List 5.14 shows
the syntax we use in OWL to define such a property.

LIST 5.14
Example of Transitive Property

1: <owl:0ObjectProperty rdf:ID="betterQualityPriceRatio">
2: <rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl
#TransitiveProperty"/>
3: <rdfs:domain rdf:resource="#Camera"/>

IS

<rdfs:range rdf:resource="#Camera"/>
5: </owl:ObjectProperty>

This syntax should look familiar to you; it is just like the symmetric property.
All you need to do is to indicate that this property is a transitive property. You should
be able to express the definition easily now.

5.4.4 ENHANCED REASONING Power 5

OWL inferencing power 5

The agent sees the following in one RDF instance file:

<SLR rdf:ID="NikonD70">
<betterQualityPriceRation rdf:resource="NikonD50"/>
</SLR>

and in another RDF instance file, the agent find this:

<SLR
rdf:about="http://www.yuchen.net/photography/myCameralnstance
.rdf#NikonD50"

The Web Ontology Language 113

xmlns="http://www.yuchen.et/photography/Camera.owl#">
<betterQualityPriceRatio>
<SLR rdf:about="http://www.someSite.net/otherCameraInstance
#Canon20D">
</betterQualityPriceRatio>
</SLR>

The agent understands the following:
betterQualityPriceRatio is a transitive property, and therefore:

http://www.yuchen.net/photography/myCameralnstance
.rdf#NikonD50 must have a betterQualityPriceRatio than
http://www.someSite.net/otherCameraInstance#Canon20D.

The agent collected the information from two different instance files; yet it was able
to draw the conclusions based on our camera ontology. In other words, the distributed
information over the Internet was integrated and intelligent reasoning was done by
the machine because we had expressed the knowledge in our ontology.

Also important is the correct use of the namespaces; it is another reason why
the aforesaid reasoning is possible. Remember Rule #3 — you can talk about
anything you want over the Internet, but you need to use the right URI; otherwise,
you will be talking about something else.

In our example, the URI

http://www.yuchen.net/photography/myCameraInstance.rdf#NikonD50

represents a camera resource that we have described. Someone else, in his own
instance file, added some extra information about the same camera instance by using
the same URI. Also, he used another URI to represent another camera, namely:

http://www.someSite.net/otherCameraInstance#Canon20D

The agent is then able to draw conclusions, as shown earlier. By now, you must
see the magic: yes, the information is distributed all over the place, but the URI
connects them all.

An important conclusion:

Reuse URIs as much as you can, especially when the following is true: if you know
you are talking about some resource that has already been described by someone else
using the vocabulary defined in some ontology files, and if you agree with the semantics
expressed in the ontology files, then reuse the URI when you describe that resource;
do not invent your own.

As an aside, the URI you have invented or are going to invent might be used again
and again by people all over the world; so try to come up with a good namespace for it.

5.4.5 FUNCTIONAL PROPERTIES

A functional property describes the situation in which, for any given instance, there
is at most one value for that property. In other words, it defines a many-to-one
situation: there is at most one unique value for each instance.

114 Introduction to the Semantic Web and Semantic Web Services

Recall that in our camera ontology, we had defined a pixel property. Clearly,
each digital camera has only one pixel value. Another example in this ontology is
the model property: for each camera, we should be using only one model string to
describe its model, for instance, “Nikon D70.” On the other hand, there are many
cameras whose model is “Nikon-D70.”

Let us change the model definition to include this requirement, as shown in List 5.15.

LIST 5.15
Example of FunctionalProperty

1: <owl:DatatypeProperty rdf:ID="model">
2: <rdf:type
rdf :resource="http://www.w3.0rg/2002/07/owl
#FunctionalProperty"/>
<rdfs:domain rdf:resource="#Specifications"/>
4: <rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchema#string" />
5: </owl:DatatypeProperty>

w

5.4.6 ENHANCED REASONING POWER 6

OWL inferencing power 6
The agent sees this in one RDF instance file:

<SLR
rdf:about="http://www.yuchen.net/photography/myCameraInstance
.rdf#NikonD70">
<model rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string>
Nikon D70
</model>
</SLR>

and in another RDF instance file, the agent finds this:

<SLR

rdf:about="http://www.yuchen.net/photography/myCameralnstance
.rdf#NikonD70"

xmlns="http://www.yuchen.et/photography/Camera.owl#">
<model rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string>
Nikon-D70
</model>

</SLR>

The agent understands the following:

Because model is a functional property, and these two RDF statements de-
scribe the same resource, i.e., the URI for this resource is

http://www.yuchen.net/photography/myCameralnstance
.rdf#NikonD70

Therefore, Nikon D70 and Nikon-D70 have the same meaning.

The Web Ontology Language 115

These two descriptions collected by the agent are located in two different RDF
documents. Without the functional property, the agent has no way of deciding that
Nikon D70 and Nikon-D70 are in fact the same. You can even use D70 or D-70, but
they are all the same. This is not a big deal for humans, but for a machine it is a
big achievement. If the agent happens to be a crawler of a search engine, you can
imagine how helpful this ability will be.

5.4.7 INVERSE PROPERTY

An inverse property describes the situation in which, if a resource R1 is connected
to resource R2 by property P, then the inverse property of P will connect resource
R2 to resource R1.

A good example in our camera ontology is the property owned_by. Clearly, if
a camera iS owned_by a Photographer, then we can define an inverse property of
owned_by, say, own, to indicate that the Photographer owns the camera. This
example is given in List 5.16.

LIST 5.16
Example of owl:inverseof Property

<owl:ObjectProperty rdf:ID="owned_by">
<rdfs:domain rdf:resource="#SLR"/>
<rdfs:range rdf:resource="#Photographer"/>
</owl:0ObjectProperty>

s W N e

5: <owl:0ObjectProperty rdf:ID="own">

6: <owl:inverseOf rdf:resource="#owned_by"/>
7: <rdfs:domain rdf:resource="#Photographer"/>
8: <rdfs:range rdf:resource="#SLR"/>

9: </owl:ObjectProperty>

5.4.8 ENHANCED REASONING POWER 7
OWL inferencing power 7
The agent sees this in one RDF instance file:

<Photographer rdf:ID="Liyang">
<own
rdf :resource="http://www.yuchen.net/photography/myCameraInstance
.rdf#NikonD70" />
</Photographer>

It will add the following into its “knowledge base”:

Subject: #Liyang
Predicate: #own
Object: #NikonD70

116 Introduction to the Semantic Web and Semantic Web Services

Once the agent realizes own is an inverse property of owned_by, it will add
the following into the database, without you doing anything:

Subject: #NikonD70
Predicate: #owned_by
Object: #Liyang

5.4.9 INVERSE FUNCTIONAL PROPERTY

Recall the functional property. It states that for a given rdfs:domain value, there
is a unique rdfs:range value. For instance, for a given camera, there is only one
model value. An inverse functional property, as its name suggests, is just the
opposite of functional property; for a given rdfs:range value, the rdfs:domain
value must be unique.

We can modify the own property to make it an inverse functional property (see
List 5.17). This states that for a given SLR, there is a unique Photographer who
owns it.

LIST 5.17
Example of InverseFunctionalProperty Property

1: <owl:ObjectProperty rdf:ID="owned by">

2 <rdfs:domain rdf:resource="#SLR"/>

3: <rdfs:range rdf:resource="#Photographer"/>
4: </owl:ObjectProperty>

(]

: <owl:ObjectProperty rdf:ID="own">
6: <rdf:type
rdf:resource="http://www.w3.0rg/2002/07/owl#InverseFunctional

Property"/>

7: <owl:inverseOf rdf:resource="#owned_by"/>
<rdfs:domain rdf:resource="#Photographer"/>

9: <rdfs:range rdf:resource="#SLR"/>

10: </owl:ObjectProperty>

5.4.10 ENHANCED REASONING Power 8
OWL inferencing power 8

The agent sees this in one RDF instance file:

<Photographer rdf:ID="LiyangJin”>
<own
rdf:resource="http://www.yuchen.net/photography/myCamera
Instance.rdf#NikonD70" />
</Photographer>

The Web Ontology Language 117

and in another RDF instance file, the agent finds this:

<Photographer rdf:ID="JinLiyang">
<own
rdf:resource="http://www.yuchen.net/photography/myCamera
Instance.rdf#NikonD70" />
</Photographer>

Because own is defined as an inverse functional property, the agent understands
the following:

someNamespacel:LiyangJin = someNamespace2:JinLiyang

Now, at this point, you can understand how important this is. For example, the
life of a search engine will be much easier. I will leave this to you as an exercise.

Up to this point, we have covered the following OWL vocabulary: owl:Thing,
owl:Class, owl:Restriction, owl:allvValuesFrom, owl:hasValuesFrom,
owl:hasValue, owl:cardinality, owl:minCardinality, owl:maxCardinal-
ity, owl:intersectionOf, owl:unionOf, owl:complementOf, owl:oneOf,
owl:0ObjectProperty, owl:DatatypeProperty, owl:SymmetricProperty,
owl:TransitiveProperty, owl:FunctionalProperty, and owl:Inverse-
FunctionalProperty.

5.4.11 SuMMARY AND COMPARISON

Let us summarize what we have learned about property classes in OWL. In fact, we
can make a hierarchy structure of these property classes, as shown in Figure 5.3.
Based on Figure 5.3, we need to remember several things:

1. owl:SymmetricProperty and owl:TransitiveProperty are subclasses
of owl:0jbectProperty; therefore, they can only be used to connect
resources to resources.

2. owl:FunctionalProperty and owl:InverseFunctionalProperty can
be used to connect resources to resources, or resources to an untyped literal
(such as RDF schema literal) or an typed value (such as an XMLSchema
data type).

3. owl:inverseOf is not included in Figure 5.3 because it is an OWL
property, not a property class.

Up to this point we have covered all the major language features of OWL. To
build a solid background about OWL so that you will be very well equipped to
explore the world of the Semantic Web on your own, we still have to cover other
OWL-related issues. These will be the topics of the next few sections.

118 Introduction to the Semantic Web and Semantic Web Services

| rdf:Property |

\I owl : InverseFunctionalProperty ‘

| owl :ObjectProperty | | owl :DatatypeProperty | | owl :FunctionalProperty |

| owl :SymmetricProperty | | owl:TransitiveProperty |

FIGURE 5.3 Property class hierarchy.

5.5 ONTOLOGY MATCHING AND DISTRIBUTED
INFORMATION

The integration of distributed information is always an exciting topic, and we know that
the Semantic Web is going to help us handle the distributed information in a more efficient
and global way. We have already had a foretaste of its capability in “OWL inferencing
power 5,” and we have summarized a simple rule: if appropriate, try to reuse URIs as
much as possible to ensure your data or information will be nicely collected and under-
stood, instead of always being distributed somewhere over the Internet.

However, what if you are simply unaware that a URI for the resource you are
describing already exists and have invented your own URI?

When you describe the world using RDF statements, you are using a vocabulary
written using RDF schema, or better, using OWL, and this vocabulary is the ontology
you are using. Maybe someone has already built an ontology in the same domain,
and you do not know of its existence; and later on, how are you going to indicate
these two ontologies are somehow similar to each other?

As you can tell, these are very important topics for handling of distributed
information, and the Semantic Web is all about distributed information. Fortunately,
OWL provides some capabilities to solve these problems to some extent. We will
examine these features next.

5.5.1 DEFINING EQUIVALENT AND DisjoINT CLASSES

One way to make ontology matching easier (and enhance the automatic processing
of distributed information) is to explicitly declare that two classes in two different
ontologies are equivalent classes. OWL provides us a property called owl:equiv-
alentClass to accomplish this.

Let us assume that after creating our camera ontology, we become aware that
another ontology exists in the same domain, which among other things, has defined
the following classes:

® DigitalCamera
® SingleLensReflex

The Web Ontology Language 119

After further examining the semantics in this ontology, it is clear that these two
classes express the same meanings we intended to; therefore, we need to explicitly
indicate that class DigitalCamera is equivalent to class Digital, and class Sin-
gleLensReflex is equivalent to class SLR, as shown in List 5.18.

LIST 5.18
Example of Using a owl:equivalentClass Property

1l: <owl:Class rdf:ID="Digital">

2: <rdfs:subClassOf rdf:resource="#Camera"/>

3: <owl:equivalentClass
rdf:resource="http://www.yetAnotherOne.com#DigitalCamera" />

4: </owl:Class>

5: <owl:Class rdf:ID="SLR">
6: <rdfs:subClassOf rdf:resource="#Digital"/>
7: <owl:equivalentClass
rdf:resource="http://www.yetAnotherOne.comi#SingleLens
Reflex"/>
8: </owl:Class>

Now, in any RDF document, if you have described an instance of type SLR, it
is also an instance of type singleLensReflex. It is not hard to imagine at this point
that this declaration will greatly improve the accuracy or smartness of our agent
when processing the distributed information over the Internet.

OWL also provides a way to define that two classes are not related in any way.
For instance, in our camera ontology, we have defined SLR and PointAndShoot as
subclasses of Digital. You might have noticed that an SLR camera in many cases
can be simply used as a PointAndShoot camera. To avoid this confusion, we can
define SLR to be disjoint from the PointAndshoot class, as shown in List 5.19.

LIST 5.19
Example of Using owl:disjointwWith Property

1: <owl:Class rdf:ID="SLR">
2: <rdfs:subClassOf rdf:resource="#Digital"/>
3: <owl:equivalentClass
rdf:resource="http://www.yetAnotherOne.com#SingleLens
Reflex"/>
<owl:disjointWith rdf:resource="#PointAndShoot" />
: </owl:Class>

LIS

Once the agent sees this definition, it will understand that any instance of SLR
can never be an instance of the PointAndShoot camera at the same time. Also, note
that owl:disjointwith by default is a symmetric property: if SLR is disjoint with
PointAndShoot, then PointAndshoot is disjoint with SLR.

120 Introduction to the Semantic Web and Semantic Web Services

5.5.2 DISTINGUISHING INSTANCES IN DIFFERENT RDF DOCUMENTS

In fact, we can see that two instances are the same even when creating the instance
files (RDF documents). For example, part of one instance document looks like this:

<SLR rdf:ID="NikonD70"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns="http://www.yuchen.net/photography/Camera.owl#">
<owned_by rdf:resource="http://www.yuchen.net/people#Liyang"/>

In another RDF document, we find the following:

<SLR rdf:ID="Nikon-D70"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns="http://www.yuchen.net/photography/Camera.owl#">
<owned_by rdf:resource="http://www.yuchen.net/people#Liyang"/>

</SLR>

The question the agent has is, are these two instances the same? We can use the
owl:sameIndividualAs property to make it clear to the agent (we need to do this
only in one document, assuming the URI of the preceding instance is http://www
.theURI.com#Nikon-D70). This is shown in List 5.20.

LIST 5.20
Example of Using owl:sameIndividualAs Property

<SLR rdf:ID="Nikon-D70-Asian Version"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#"
xmlns="http://www.yuchen.net/photography/Camera.owl#">
<owl:sameIndividualAs rdf:resource="http://www.theURI.com#Nikon-
D70"/>
<owned_by rdf:resource="http://www.yuchen.net/people#Liyang"/>

</SLR>

This will make it clear to the agent that these two instances are the same. On
the other hand, how do we indicate that the two instances are different? OWL
provides another property to accomplish this, as shown in List 5.21.

LIST 5.21
Example of Using owl:differentFrom Property

<SLR rdf:ID="Nikon-D70-Asian Version"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#"
xmlns="http://www.yuchen.net/photography/Camera.owl#">
<owl:differentFrom rdf:resource="http://www.theURI.com#Nikon-D70"/>

The Web Ontology Language 121

<owned_by rdf:resource="http://www.yuchen.net/people#Liyang"/>

</SLR>

This is all good. But what if you forget to use the owl:differentFrom or the
owl:sameIndividualAs property? A much easier way is to use owl:AllDifferent
in the ontology file, as shown in List 5.22.

LIST 5.22
Example of Using owl:aAllDifferent Property

. other definitions

<owl:AllDifferent>
<owl:distinctMembers rdf:parseType="Collection">
<SLR rdf:about="some-namespace-here#NikonD70"/>
<SLR rdf:about="some-namespace-here#Nikon-D70-AsianVersion"/>
</owl:distinctMembers>
</owl:AllDifferent>

. other definitions

This is clearly a good way to go and much easier to maintain. If you have more
instances that are different from each other, you do not have to use owl:different-
From in every single RDF document; you can just make the change in this one place.

Up to this point, we have covered the following OWL vocabulary: owl:Thing,
owl:Class, owl:Restriction,owl:allvValuesFrom, owl:hasValuesFrom,
owl:hasValue,owl:cardinality,owl:minCardinality, owl:maxCardinal-
ity,owl:intersectionOf, owl:unionOf, owl:complementOf, owl:oneOf,
owl:0ObjectProperty, owl:DatatypeProperty, owl:SymmetricProperty,
owl:TransitiveProperty, owl:FunctionalProperty, owl:Inverse-
FunctionalProperty, owl:equivalentClass, owl:disjointWith,
owl:sameIndividualAs, owl:differentFrom, owl:AllDifferent, and
owl:distinctMembers.

5.6 OWL ONTOLOGY HEADER

Before we end, we need to discuss the header of OWL documents. OWL documents
are more often called OWL ontologies. They are also RDF documents, which is why
the root element of an OWL ontology is always an rdf :RDF element.

A typical header part of an OWL ontology is shown in List 5.23. The
owl:0Ontology class is new here. Normally, an OWL ontology starts with a collection
of assertions for housekeeping purposes and these statements are grouped under
owl:0ntology, as shown in lines 6 to 12.

122 Introduction to the Semantic Web and Semantic Web Services

LIST 5.23
OWL Ontology Header

1: <?xml version="1.0"?>

2: <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
3: xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"

4 xmlns:owl="http://www.w3.0rg/2002/07/owl#"

5 xml:base="http://www.yuchen.net/photography/Camera.owl">

6: <owl:0Ontology
rdf:about="http://www.yuchen.net/photography/
Camera.owl">

7: <rdfs:comment>our camera ontology</rdfs:comment>
<rdfs:label>Camera ontology</rdfs:label>
9: <owl:priorVersion

rdf :resource=http://www.yuchen.net/photography/Cameral.owl" />
10: <owl:versionInfo>Camera.owl 0.2</owl:versionInfo>
11: <owo:imports
rdf:resource="http://www.somedomain.org/someOnt.owl" />
12: </owl:Ontology>

Among these lines, rdfs:comment, rdfs:label, owl:priorVersion, and
owl:versionInfo are for humans; the only statement that means anything to the
parser is the owl:imports statement. It includes other ontologies whose contents
are assumed to be part of the current ontology; in other words, imported ontologies
provide definitions that can be used directly.

Up to this point, we have covered the following OWL vocabulary: owl:Thing,
owl:Class,owl:Restriction, owl:allvValuesFrom, owl:hasValuesFrom,
owl:hasValue, owl:cardinality, owl:minCardinality, owl:maxCardi-
nality, owl:intersectionOf, owl:unionOf, owl:complementOf,
owl:oneOf, owl:0bjectProperty, owl:DatatypeProperty, owl:Symmet—
ricProperty, owl:TransitiveProperty, owl:FunctionalProperty,
owl:InverseFunctionalProperty, owl:equivalentClass, owl:dis-
jointWith, owl:sameIndividualAs, owl:differentFrom, owl:Al11Dif-
ferent, owl:distinctMembers, owl:0Ontology, owl:priorVersion,
owl:versionInfo, owl:imports, rdfs:comment, and rdfs:label

5.7 FINAL camera ONTOLOGY REWRITTEN IN OWL

Now that we have discussed all the language constructs of OWL, it is time to finally
complete our project: rewrite the camera ontology using OWL.

5.7.1 camera ONTOLOGY

In the previous sections, to discuss the details of different OWL language features,
we made our camera ontology quite complex, especially the property definitions. In

The Web Ontology Language 123

our final product, though, we are not going to include all these features. The complete
final camera ontology is given in List 5.24.

LIST 5.24
Final camera Ontology Written in OWL

//

// Camera.owl

//

1: <?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#"
xml:base="http://www.yuchen.net/photography/Camera.owl">

U W N

6: <owl:0Ontology
rdf :about="http://www.yuchen.net/photography/Camera.owl">

7: <rdfs:comment>our final camera ontology</rdfs:comment>
8: <rdfs:label>Camera ontology</rdfs:label>
9: <owl:versionInfo>Camera.owl 1.0</owl:versionInfo>

10: </owl:Ontology>

//
// classes definitions

//

11: <owl:Class rdf:ID="Camera">
12: </owl:Class>

13: <owl:Class rdf:ID="Person">
14: </owl:Class>

15: <owl:Class rdf:ID="Film">
16: <rdfs:subClassOf rdf:resource="#Camera"/>
17: </owl:Class>

18: <owl:Class rdf:ID="Digital">

19: <rdfs:subClassOf rdf:resource="#Camera"/>

20: <owl:equivalentClass
rdf:resource="http://www.yetAnotherOne.com#DigitalCamera" />

21: </owl:Class>

22: <owl:Class rdf:ID="SLR">

23: <rdfs:subClassOf rdf:resource="#Digital"/>
24: <owl:equivalentClass
rdf:resource="http://www.yetAnotherOne.com#SingleLens
Reflex"/>
25: <owl:disjointWith rdf:resource="#PointAndShoot"/>

26: </owl:Class>

27: <owl:Class rdf:ID="PointAndShoot">

124

28:
29:

30:
31:
32:

33:
34:

35:
36:
37:
38:

39:
40:
41:

42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

54:
55:
56:
57:

58:
59:
60:
61:

//

Introduction to the Semantic Web and Semantic Web Services

<rdfs:subClassOf rdf:resource="#Digital"/>
</owl:Class>

<owl:Class rdf:ID="Photographer">
<rdfs:subClassOf rdf:resource="#Person"/>
</owl:Class>

<owl:Class rdf:ID="Specifications">
</owl:Class>

<owl:Class rdf:ID="Professional">
<rdfs:subClassOf rdf:resource="#Photographer"/>
<owl:disjointWith rdf:resource="#Amateur"/>
</owl:Class>

<owl:Class rdf:ID="Amateur">
<rdfs:subClassOf rdf:resource="#Photographer"/>
</owl:Class>

<owl:Class rdf:ID="ExpensiveSLR">
<rdfs:subClassOf rdf:resource="#SLR"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#owned by"/>
<owl:someValuesFrom rdf:resource="#Professional"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#expensiveOrNot"/>
<owl:hasValue
rdf:datatype="http://www.w3.0rg/2001/XMLSchema
#string">
expensive
</owl:hasValue>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<owl:AllDifferent>
<owl:distinctMembers rdf:parseType="Collection">
</owl:distinctMembers>

</owl:AllDifferent>

// property definitions

//

62:
63:
64:

<owl:DatatypeProperty rdf:ID="expensiveOrNot">
<rdfs:domain rdf:resource="#Digital"/>
<rdfs:range

The Web Ontology Language 125

65:

66:

67:
68:

69:
70:

71:

72:
73:
74:

75:

76:
77:

78:

79:
80:
81:
82:

83:
84:
85:
86:

87:
88:
89:
90:
91:

92:
93:

94:
95:
96:

97:
98:

rdf:resource="http://www.w3.0rg/2001/XMLSchema#string" />
</owl:DatatypeProperty>

<rdfs:datatype
rdf:about="http://www.w3.0rg/2001/XMLSchema#string" />

<owl:DatatypeProperty rdf:ID="model">
<rdf:type
rdf :resource="http://www.w3.0rg/2002/07/owl#Functional
Property"/>
<rdfs:domain rdf:resource="#Specifications"/>
<rdfs:range
rdf:resource="http://www.w3.0rg/2001/XMLSchema#string" />
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="pixel">
<rdfs:domain rdf:resource="#Digital"/>
<rdfs:range
rdf:resource="http://www.someStandard.org#MegaPixel" />
</owl:DatatypeProperty>

<rdfs:datatype rdf:about="http://www.someStandard.org#MegaPixel">
<rdfs:subClassOf
rdf:resource="http://www.w3.0rg/2001/XMLSchema#decimal" />
</rdfs:datatype>

<owl:ObjectProperty rdf:ID="has_spec">
<rdfs:domain rdf:resource="#SLR"/>
<rdfs:range rdf:resource="#Specifications"/>
</owl:0ObjectProperty>

<owl:ObjectProperty rdf:ID="owned_by">
<rdfs:domain rdf:resource="#SLR"/>
<rdfs:range rdf:resource="#Photographer"/>
</owl:0bjectProperty>

<owl:ObjectProperty rdf:ID="own">
<owl:inverseOf rdf:resource="#owned by"/>
<rdfs:domain rdf:resource="#Photographer"/>
<rdfs:range rdf:resource="#SLR"/>
</owl:0ObjectProperty>

<owl:ObjectProperty rdf:ID="friend with">
<rdf:type
rdf :resource="http://www.w3.0rg/2002/07/owl#Symmetric
Property"/>
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="#Person"/>
</owl:0ObjectProperty>

<owl:ObjectProperty rdf:ID="betterQualityPriceRatio">
<rdf:type

126 Introduction to the Semantic Web and Semantic Web Services

rdf:resource="http://www.w3.0rg/2002/07/owl#Transitive
Property"/>
99: <rdfs:domain rdf:resource="#Camera"/>
100: <rdfs:range rdf:resource="#Camera"/>
101: </owl:ObjectProperty>

102: </rdf:RDF>

This is the camera ontology written in OWL, and it is indeed quite impressive.
For instance, we used owl:versionInfo to nicely identify the version number of
this ontology, and we have added several new properties and imposed constraints
on some classes. Also, note that lines 58 to 61 leave some space for us to later on
declare the instances that should be treated differently. But what does this ontology
tell us? What is the semantics encoded in it? Let us take a closer look.

5.7.2 SemanTIics oF THE OWL CAMERA ONTOLOGY

1. Our camera ontology defines a set of concepts or classes in the domain
of photography. It tells us the following by defining these classes:

e cCamera is a class, and Person is a class.

e Filmand Digital are subclasses of camera. Therefore, they are spe-
cial types of cameras.

* SILR and PointAndShoot are subclasses of Digital. Therefore, they
are special types of Digital cameras and, certainly, they are also
Cameras.

* ExpensiveSLR is a subclass of sLR. Therefore, it is a special kind of
SLR; it is a Digital camera; and it is a Camera in general.

* Photographer is a subclass of Person. Therefore, it is a special kind
of pPerson.

* Professional and Amateur are subclasses of Photographer. There-
fore, they are all Photographers, and they are also Person in general.

* sSpecifications is another class or concept in our camera ontology.

2. Our camera ontology also defines some more details about these classes:
e The Digital class in this ontology is the same as the DigitalCamera

concept defined in another ontology.

* The sLR class in this ontology is the same as the SingleLensReflex
class defined in another ontology.

* An instance of SLR cannot be an instance of PointAndShoot at the
same time; these two classes have no overlap of any kind.

* An instance of Professional cannot be an instance of Amateur at
the same time; these two classes have no overlap of any kind.

3. Our camera ontology defines a set of properties, and these properties are
used to relate class to class or class to values. This has added considerable
semantics to our ontology:

* A property called owned_by is defined. It is used to relate the classes
SLR and Photographer, meaning that an instance of SLR is owned_by
an instance of Photographer.

The Web Ontology Language 127

e A property called own is defined. It is the inverse property of owned_by,
meaning that an instance of Photographer can own an instance of SLR.

e A property called friend_with is defined. It is used to relate Person
class to itself, meaning that an instance of Person can be friend_with
another instance of Person. It is also defined to be a symmetric prop-
erty; therefore, for two given instances of Person, say, P1 and p2, if
Pl is friend with P2, then P2 is friend with P1.

* A property called betterQualityPriceRatio is defined. It is used to
relate Camera class to itself, meaning that one instance of Camera class
can have betterQualityPriceRatio than another. It is also defined
to be a transitive property; therefore, for three given instances of cCam-
era classes, say, €1, €2, and 3, if C1 is betterQualityPriceRatio
c2 and C2 is betterQualityPriceRatio C3, then C1 is betterQual-
ityPriceRatio C3.

* A property called has_spec is defined. It is used to relate SLR class
to Specifications class, meaning that an instance of SLR has an
instance of Specifications class as its specification.

* A property called pixel is defined. It is used to relate Digital class
to some typed value, meaning that an instance of Digital has some
pixel value.

* A property called model is defined. It is used to relate Specifications
class to some typed value, meaning that an instance of Specifica-
tions has some model value. Also, model is defined to be a functional
property; i.e., for any instance of Specifications class, there can be
at most one model value.

* A property called expensiveOrNot is defined. It is used to relate
Digital class to some typed value, meaning that an instance of Dig-
ital class has some expensiveOrNot value.

4. Given all the defined classes and properties, our camera ontology further
uses some properties to put constraints on some classes to express more
complex knowledge, as shown:

* For any instance of ExpensiveSLR, its owned_by property can have
multiple values, but at least one of these values has to be an instance
of Professional class

e For any instance of ExpensiveSLR, its expensiveOrNot property
always has to be the following:

http://www.yuchen.net/photography/Camera.owl#expensive.

That is it! Our camera ontology, with just over 100 lines, has expressed so
much knowledge about a specific domain; this would certainly make the agent’s
work much easier. You should be able to understand at this point how all this
knowledge can help the agent. Refresh your memory by reading the “enhanced
inferencing power” sections. You will see the enhanced reasoning power in subse-
quent chapters.

128 Introduction to the Semantic Web and Semantic Web Services

5.8 THREE FACES OF OWL

Now that we have seen all the constructs in OWL and finished our project, it is time
to see the three faces of OWL. Let us understand the need for three faces and what
they are. We will answer all these questions in this section.

5.8.1 WHyY Do WE Neep THis?

To make this clear, we need to review some history first. As we already know, the
expressiveness of RDF and RDF schema is very limited. RDF is the instance
document that contains RDF statements, and RDF schema provides the vocabulary
needed for RDF documents. RDF schema is quite simple: it defines a class hierarchy
and a property hierarchy with domain and range constraints on the properties.

After the release of RDF schema, however, the Web Ontology Working Group
of W3C (http://www.w3.0rg/2001/sw/Webont/) soon identified a number of
characteristic use cases for constructing ontologies that would indeed require much
more expressiveness than the RDF schema. For example:

e There is no way to declare equivalent and disjoint classes. Equivalent
classes are very useful when two or more ontologies are involved or
compared. Disjointedness is also important; for instance, Male and
Female classes have to be disjoint. In RDF schema, only subclass rela-
tionships can be stated.

* RDF schema does not allow the concepts of union, intersection, and
complement. These concepts are useful when building classes not just by
inheritance, but also by Boolean combinations of other classes, such as
combining two classes by using union concept.

* RDF schema does not allow cardinality restrictions on properties. In many
cases, it is important to be able to decide how many distinct values a given
property may or must take. A common case would be an e-mail account,
which should belong to exactly one Person.

* RDF schema does not provide any mechanism to localize the scope of a
property; once an rdfs:range is defined, it has to be true for the class
(and all its subclasses) defined in the rdfs :domain field. As we have seen
in our camera ontology, some property of the ExpensiveSLR class should
take some localized values instead of every possible value defined in the
rdfs:range.

* RDF does not define special characteristics of properties. This is obvious
in our camera ontology: we have defined symmetric, transitive, and func-
tional properties to make it more powerful.

Realizing this need, several research groups in both America and Europe
launched a joint effort to develop a more powerful ontology modeling language. The
result is the DAMLA+OIL language [35]. A few words about this name: the American
proposal is DAML-ONT [36] and the European is OIL [37]; the joint name is
DAML+OIL.

The Web Ontology Language 129

DAMLAOIL has been taken as the starting point for the W3C Web Ontology
Working Group for development of the language we discussed here, OWL. OWL is
intended to be the standardized ontology language of the Semantic Web.

An important issue when designing the ontology language is the trade-off
between the expressiveness and the efficiency of the reasoning process. In other
words, it is generally true that the richer the language, the more inefficient the
reasoning; sometimes, the reasoning can become complex enough to be computa-
tionally impossible. The goal therefore is to design a language that is sufficiently
expressive for large ontologies and also simple enough to be supported by reasonably
efficient reasoning engines.

Unfortunately, in the case of OWL, though some of its constructs are very
expressive, they lead to uncontrollable computational complexities. This trade-off
between reasoning efficiency and expressiveness has led the W3C Working Group
to the definitions of three different subsets of OWL, each of which is aimed at a
different level of this trade-off.

Now that we understand why there are three definitions of OWL, we can take
a look at each of them.

5.8.2 THE THRree FACES
5.8.2.1 OWL Full

The entire OWL language we discussed in this chapter is called OWL Full. Every
construct we covered in this chapter is available to the ontology developer. It also
allows combining these constructs in arbitrary ways with RDF and RDF schema,
including mixing the RDF schema definitions with OWL definitions. Any legal RDF
document is a legal OWL Full document.

The advantage of OWL Full is obvious: you have everything at your disposal,
and you enjoy very convenient expressiveness when developing your ontology. The
disadvantage is that the ontology can become so powerful as to be computationally
expensive to provide complete reasoning support; efficiency is another factor to
consider.

5.8.2.2 OWL DL

OWL DL is short for OWL Description Logic. It is a sublanguage of OWL Full and
has restrictions about how the constructs from OWL and RDF can be used. More
specifically, the following rules must be observed when building ontologies:

* No arbitrary combination is allowed: Any resource can be only a class, a
data type, a data type property, an object property, an instance, or a data
value, and not more than one of these. In other words, a class cannot be
at the same time a member of another class.

* Restrictions on functional property and inverse functional property: These
two properties are subclasses of rdf : Property; therefore, they can con-
nect resource to resource or resource to value. However, in OWL DL,

130 Introduction to the Semantic Web and Semantic Web Services

they can only be used with the object property, and not with the datatype
property.

* Restriction on transitive property: You cannot use owl:cardinality with
the transitive property, or their subproperties; these subproperties are
transitive properties by implication.

* Restriction on owl: imports: If you are developing an OWL DL ontology
but are also using owl:imports to import an OWL Full ontology, your
ontology will not be qualified as an OWL DL.

Clearly, the advantage is that OWL DL permits a quicker response from the
reasoning engine and, also, the reasoning engine itself is easier to build. The disad-

vantage is that you do not have the expressiveness or the convenience provided by
OWL Full.

5.8.2.3 OWL Lite

OWL Lite is a further restricted subset of OWL DL.:

e The following constructs are not allowed in OWL Lite: owl:hasvalue,
owl:disjointWith, owl:unionOf, owl:complementOf, and owl:oneOf.

* Cardinality constraints are more restricted: You cannot use owl:minCar-
dinality or owl:maxCardinality. You can still use owl:cardinality,
but the value is restricted to either O or 1.

* owl:equivalentClass statement can no longer be used to relate anony-
mous classes, but only to connect class identifiers.

The advantage is again efficiency on the reasoning side, both for the users and the
tool builders. The disadvantage is, of course, the loss of even more expressive power.

Now, let us decide the face of our camera ontology. Well, it is not OWL Lite,
because we did use owl :hasVvalue; it is also not OWL DL as we also used functional
property on owl:DatatypeProperty. Therefore, our camera ontology is an OWL
Full version ontology.

