Validating Your OWL
Ontology

After you have developed your ontology and before you set off to do anything
exciting (like writing a killer application using some agent), the first question you
should ask is, how do I know my OWL ontology is right? Therefore, the first tool
you need is a utility that you can use to validate your OWL ontology.

After you have validated that your OWL ontology is right, it then becomes clear
that your agent will have to be able to read information from both the instance
documents and ontology documents and conduct reasoning based on these documents.
So, evidently you need to have some kind of parser and reasoning engine to continue
your work and, ideally, these capabilities have to be provided to you in the form of
APIs so they are represented in your code base and provide the services you need.

All these capabilities (validation, parsing, reasoning APIs) we just mentioned
are part of your Semantic Web development environment. They are tools you can
use so you do not have to reinvent the wheel; you can just concentrate on your killer
application itself to accomplish your goal of changing the world.

In this chapter, we will discuss some of these tools. We will concentrate on the
validation and understanding of ontology documents, not the reasoning power they
embody. We will discuss inferencing and reasoning in greater detail in later chapters.

6.1 RELATED DEVELOPMENT TOOLS

What are the development tools available to us? At the time of this writing, we have
a very impressive list:

* RDF, RDF schema, and OWL ontology editors: So far, we have covered
RDF documents, RDF schema, and OWL ontologies, and we have always
created our documents by using a simple editor such as Notepad, or vi
on a Unix platform. In fact, there are many editors available to make our
work easy. You can use these editors to create RDF statements, RDF
schemas, or OWL ontologies.

These editors are just like the editors you have used in different IDEs, for
instance, the editor in Visual Studio Integrated Development Environment
(IDE). They can offer visual help and check basic syntax on the fly, and they
can also export the document in different formats (such as XML, N3, etc.).

Some examples are listed in Table 6.1 (note that every listing in this chapter
will be a partial listing: it is simply not possible to include all the tools here).

* RDF, RDF schema, and OWL ontology Viewer/Browser: These tools offer
the capability to visualize classes, properties, and instances, and also provide

131

132 Introduction to the Semantic Web and Semantic Web Services

a browser-like look and feel. Most editors are also viewers and browsers.
For instance, Protégé and Swoop are quite impressive browsers as well.

* RDF, RDF schema, and OWL ontology validator: Now that we have tools
to create and view the instance and ontology documents, the next step is
to validate these documents. There are quite a few validators available;
Table 6.2 only lists a few.

* Web page markup: In Chapter 2 we discussed search engines, and we also
mentioned marking up a Web document for the first time. Marking up a
document is an extremely important step toward realizing the vision of
Semantic Web, and we will talk about markup in much greater detail in
later chapters. However, it is amazing that there are many markup tools
available in the Semantic Web community. One of these tools is SMORE
[38], which creates OWL markup for HTML Web pages.

* RDF, RDF schema, and OWL ontology parsing tools: There are many
parsing tools available for use. As every reasoning engine can be used as
a parser, to avoid repeating these tools we do not list examples of parsers
here. Again, just remember you can use a reasoning engine as a parser;
in fact, the very reason why you need to parse some ontology (or instance)
documents is to be able to make inferences.

* RDF, RDF schema, and OWL ontology inferencing tools: The next step
after validation and parsing is to “understand” the documents. Currently,
many tools are available, some of which are in the form of APIs or callable
libraries so you can use them in your applications. Table 6.3 lists some
of these tools. Again, there are many other inference engines available;
we have just named a few as examples.

* RDF, RDF schema, and OWL ontology storage and query: Quite a few
inference tools can also be used as tools for storage and query. For instance,
every inference engine listed in Table 6.3 is also a good storage and query
tool. Another tool worth mentioning is Redland [39]. It is capable of manip-
ulating triples, URIs, and graphs. It also provides a rich API for application
development built on top of it. You can get more details about Redland at
http://librdf.org/.

TABLE 6.1

Tools for Editing Ontology and RDF Documents

Tool Name Brief Description

Protégé Protégé-OWL editor: create ontology document in
http://protege.stanford.edu/ a variety of formats

Swoop Swoop ontology editor
http://www.mindswap.org/2004/SWOOP/

OilEd Editor for ontology documents
http://oiled.man.ac.uk/

RDF Instance Creator Create RDF statements from ontologies

http://www.mindswap.org

Validating Your OWL Ontology 133

TABLE 6.2
Tools for Validating Ontology Documents
Tool Name Brief Description
W3C RDF Validation Service RDF document validation provided
http://www.w3.org/RDF/Validator/ by W3C; we have used it in
Chapter 3
OWL Ontology Validator OWL ontology validator, quite
http://phoebus.cs.man.ac.uk:9999/0WL/Validator commonly used
OWL Validator OWL validator
http://projects.semwebcentral.org/projects/
vowlidator/
TABLE 6.3
Tools for Reasoning Based on Ontology Documents
Tool Name Brief Description
Jena Developed by HP; support for RDF, RDF schema,
http://jena.sourceforge.net/ and OWL with reasoning engine
Pellet Open-source Java-based OWL DL reasoner

http://www.mindswap.org/2003/pellet/ provided by Mindswap

Sesame Support for RDF schema reasoning
http://www.openrdf.org/

Euler Inference engine supporting logic-based proof
http://www.agfa.com/w3c/euler/

Up to now we have reviewed some popular tools in each category, including
editing, validating, parsing, reasoning, and querying. In the rest of this chapter, let
us use some of these tools. In the next section, we will take a look at how to use
the validation tool to validate our camera ontology, and we will then write Java code
to interact with Jean APIs to read and parse our ontology. This should give you a
good start as far as development tools are concerned.

6.2 VALIDATE OWL ONTOLOGY BY USING WEB
UTILITIES

Let us now validate our camera ontology shown in Chapter 5, List 5.24. The first question
to answer is, what exactly do we mean by validating an OWL ontology document?
This validation consists of at least two parts. The first part validates if the syntax
is correct. For example, it has to be a legal document in that each opening tag has
to have a closing tag. The construct used in the document has to be defined in some
namespaces, and the classes and properties mentioned in the document also have to
be defined as well. More specifically, if you use something similar to rdfs:com-
ments, then the validator will raise a red flag: you should use rdfs:comment. A
validator may even tell you that you have used a tag owl:ontology but your ending

134 Introduction to the Semantic Web and Semantic Web Services

tag is owl:Ontology; this case mismatch should be corrected before you can move
on. As another example, if you have something like this in your OWL ontology
document:

<owl:Class rdf:ID="PointAndShoot”>
<rdfs:subClassOf rdf:resource="#Digital”/>
</owl:Class>

then it is required that class Digital also be defined somewhere in the same
document.

The second part of the validation is to validate the semantics. For instance, if
you have specified that the rdfs:range of a property has to be XML strings, then
you cannot use a resource (i.e., some instance) as its value. Also, if you have used
a property together with a class or instance, then either that class or any of its
superclasses has to be declared related to this property.

Some validators will also output the whole class and property structure based
on their own understanding of your document, and if you have created the document
right, you should be able to see the class and property structure printed as you
wanted. We will see an example of this when using a validator.

6.2.1 UsING THE “OWL ONTOLOGY VALIDATOR”

Let us choose the OWL ontology validator developed by Mindswap (www.mind-
swap.org) as our tool to validate the camera ontology. This validator will check
what kind of OWL ontology you have by checking it against OWL Full, OWL DL,
and OWL Lite. It will tell you the type and also show you the class and property
structure found in your document. If there are any syntax errors in your document,
it will print out exception messages so you can go ahead and correct the errors.

Letus gotohttp://www.mindswap.org/2003/pellet/demo.shtml to access
this validator. Its opening interface is shown in Figure 6.1.

As you can tell, you have two choices when using this validator. You can either
cut-and-paste your OWL document into the RDF window or you can specify a URL
link that points to your OWL ontology document in the URL textbox. It is normally
true that in the development stage, you would prefer not to upload the ontology
document to your Web server until it is stable, so let us just cut and paste our
document (List 5.24) into the text window. Now set your options by checking the
appropriate boxes (not shown in Figure 6.1), and you can start validation by clicking
the Submit button.

6.2.2 WHAT THE REsuLts MEAN

Upon successfully validating the document, the validator returns with the result page
shown in Figure 6.2.

We will get this page back only when the submitted camera ontology document
is a legal document. If there is something wrong in the document, the validator will
throw exceptions so that we can make corrections.

Validating Your OWL Ontology 135

J Pellet OWL Reasoner, - Online Demo - Mozilla Firefox

Fle Edit Wew Go Bookmarks Tools Help

<Z| - [::> > @ @ @ |L] http:f fwww mindswap,orgf2003pelletidema, shtml ‘V‘ @ Go “C‘. ‘
|:l ‘Windows Marketplace
x Disable |1] Cookiesw 570 €55+ (%) Forms~ &7 Images~ @ Information~ Miscellaneous~ [9@ Outline~ Resize= @ Tools~ LTj Wiew Source~ ﬂ'_E]

Google - v 'I> |Gl search ~ & *¥ check ~ *K autolink] Autoril B subscribe + »
w

mindswap

maryland information and network dynamics lab semantic web agents project
@®Home @People @ Papers @ Photos @ Projects @ Software @ Directions @ Funding @ Blog
® Manage @ RDF Map -

Overview | ProjectPage | Download | Support | FAQ | Onlinedemo |
Performance | Pellet Widget

OWL Consistency Checker MINDS\XIAP

Enter a URI or paste an OWL document inta the following text field to check the consistency of an

OWL ontology. The level of the input file (Lite, DL or Full) wil also be shown, Additionally, you can specify a URT
of another file to check if all the triples in this conclusions file is entailed from the triples in input file, The
classification of all the concepts in the input file can alsa be printed in a tree or table format, Please send your
comments, questions and problems to Pellet users list, Before posting messages, you need to first subscribe
to the maiing list.

* Examples: [Please choose an example and click submit to see different ways ta use the demo v]

Clear Al

® Input: Enter a URI (or Text) for an OWL ontology to check for consistency and optionally display the
Classification

URI: | | [FOFAML v M}

or Text:

<owl:0Ontology
rdf:about="http: //wuw. yuchen.net /photography/Canera. owl">
<rdfs:comment>our final camera ontology</rdfs:comment>
<rdfs:1label>Camera ontology</rdfs:label>
<owl:versionInforCamera.owl 1.0</owl:versionInfox»
</owl:0ntology>

onleClass ydfsTN="Camera™
Done ‘]

FIGURE 6.1 OWL ontology validator.

The result page shows that the submitted document is an OWL Full version (as
we have concluded), and includes the reason for this conclusion. It also outputs the
class hierarchy for you to review.

Some other validators may output more information than the one we have just
used. Another popular validator is the one developed by the University of Manchester.
You can access this validator at this location http://phoebus.cs.man.ac.uk:9999/
OWL/Validator. This validator shows a more detailed structure that includes all the
classes and properties that we have defined in our ontology. We can examine this
structure to further confirm that the ontology does express what we wanted it to
express. Let us list the whole structure in List 6.1 so we can take a further look (the
line numbers are added for illustrative purposes).

Lines 1 to 7 summarize all the namespaces used in the camera ontology document.
The validator also aliases the long namespaces with a much shorter and simpler name.

Line 9 declares the ontology that ends at line 89 — every statement between
line 9 and line 89 is part of this ontology. Note that line 9 also identifies the
namespace of the underlying ontology.

136

Introduction to the Semantic Web and Semantic Web Services

©J Pellet Results - Mozilla Firefox

File Edit View Go Bookmarks Tools Help

<:ZI 2 E> - @ @ |U http: ffwww, mindswap, orgfcgi-bin/ 2003/pellet/pelletPost .cq V‘ ©® o HQ, |

|1 windows Marketplace

x Disable~ Ql Cookies™ E:} 557 ﬁ Forms+ & Images~ @ Information™ Miscellaneous= w Qutline~ Resize~ @ Tools™ @ il

COOgIB M ‘ "" i [G\ Search ~ @ “5 Check - 'E'\ AutoLink El AutoFil >

A

Results il

Input file: Text area

OWL Species: Full

DL Expressivity: SOIF(D)

Consistent: Ves

Time: 1839 ms (Loading: 1680 Species Validation: 104 Consistency: 16 Classification: 37 Realization: 0)

Classification:

0wl Thing
o cameraCarnera
® wwrw yet AnotherOne com DigitalCamera = camera Digital
® camera:PointAndShoot
® wrnw yethnotherOne cormSinglel ensReflex = camera:SLR. I
= camera:ExpenstveSLE =
= careraFil
o camera:Person
= carera Photographer
® camera Professional
= carnera:Aatenr

o camera:Specifications

Non OWL-DL features used:

Ungyped Class: Asswrng wrwnw yetdnotherOne coruSingleLensReflex is a class

Untyped Class: Assuraing wwrw yet AnotherOre cora DigitalCaraers is a class

Non OWL Lite features used:

Digjoinf (Tasses: owl:disjointWith constraet is used DisjointClasses(carera Professinnal carera: Arateur)

Disjoinf Classes: owl:disjointWith construct is used DisjomtClasses{carnera SLR. carnera Point&ndShoot;

Value Restriction: owlhasValue construct is used restriction(cameraexpensiveOrNot value(" expensive "*"xsd:string))

Done

FIGURE 6.2 Validation results.

LIST 6.1

Validation Results from the Validator Developed by the University of Manchester
1: Namespace(rdf = <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>)
2: Namespace(xsd = <http://www.w3.0rg/2001/XMLSchema#>)

3: Namespace(rdfs = <http://www.w3.0rg/2000/01/rdf-schema#>)

4: Namespace(owl = <http://www.w3.0rg/2002/07/owl#>)

5: Namespace(a = <http://www.yuchen.net/photography/Camera.owl#>)
6: Namespace(b = <http://www.yetAnotherOne.com#>)

7: Namespace(c = <http://www.someStandard.org#>)

8:

9: Ontology(<http://www.yuchen.net/photography/Camera.owl>

10:

11: Annotation(rdfs:label "Camera ontology")

12: Annotation(rdfs:comment "our final camera ontology")

13: Annotation(owl:versionInfo "Camera.owl 1.0")

14:

15: ObjectProperty(a:betterQualityPriceRatio Transitive

Validating Your OWL Ontology 137

16: domain(a:Camera)

17: range(a:Camera))

18: ObjectProperty(a:friend with Symmetric

19: domain(a:Person)

20: range(a:Person))

21: ObjectProperty(a:has_spec

22: domain(a:SLR)

23: range(a:Specifications))

24: ObjectProperty(a:own

25: inverseOf (a:owned_by)

26: domain(a:Photographer)

27: range(a:SLR))

28: ObjectProperty(a:owned_ by

29: inverseOf(a:own)

30: domain(a:SLR)

31: range(a:Photographer))

32:

33: DatatypeProperty(a:expensiveOrNot

34: domain(a:Digital)

35: range(xsd:string))

36: DatatypeProperty(a:model Functional

37: domain(a:Specifications)

38: range(xsd:string))

39: DatatypeProperty(a:pixel

40: domain(a:Digital)

41: range(c:MegaPixel))

42:

43: Class(c:MegaPixel partial

44: xsd:decimal)

45: Class(rdfs:datatype partial)

46: Class(xsd:decimal partial)

47: Class(b:DigitalCamera partial)

48: Class(b:SingleLensReflex partial)

49: Class(a:Amateur partial

50: a:Photographer)

51: Class(a:Camera partial)

52: Class(a:Digital complete

53: b:DigitalCamera)

54: Class(a:Digital partial

55: a:Camera)

56: Class(a:ExpensiveSLR partial

57: restriction(a:owned by someValuesFrom(a:Professional))

58: a:SLR

59: restriction(a:expensiveOrNot value
("expensive"”"<http://www.w3.0rg/2001/XMLSchema#string>)))

60: Class(a:Film partial

61: a:Camera)

62: Class(a:Person partial)

63: Class(a:Photographer partial

64: a:Person)

138 Introduction to the Semantic Web and Semantic Web Services

65: Class(a:PointAndShoot partial

66: a:Digital)

67: Class(a:Professional partial

68: a:Photographer)

69: Class(a:SLR complete

70: b:SingleLensReflex)

71: Class(a:SLR partial

72: a:Digital)

73: Class(a:Specifications partial)

74:

75: AnnotationProperty(rdfs:comment)
76: AnnotationProperty(rdfs:label)

77: AnnotationProperty(owl:versionInfo)
78:

79: Individual (c:MegaPixel

80: type(rdfs:datatype))

81: Individual(xsd:string

82: type(rdfs:datatype))

83:

84: DisjointClasses(a:SLR a:PointAndShoot)
85: DisjointClasses(a:Professional a:Amateur)
86:

87: DifferentIndividuals()

88:

89:)

Within the ontology description, the first important part is all the owl:0bject-
Property and owl:DatatypeProperty defined in the ontology (lines 15 to 41).

The class summary is presented from lines 43 to 73. Let us use ExpensiveSLR
as an example. Lines 56 to 59 state that class ExpensiveSLR is a subclass of the
following three classes. The first one is an anonymous class whose owned_by
property has to take an instance of class Professional as its value at least once.
The second class is the SLR class, and the third superclass is another anonymous
class whose expensiveOrNot value has to be expensive. Also, the summary shows
that this expensive string has to be an XML string by using “~“<http://www.w3
.0org/2001/XMLSchema#string>".

You can read the rest of the summary in a similar way, and as you can tell, our
camera ontology is a “good” ontology: its syntax is legal and it expresses exactly
what we wanted to express.

Let us move on now to take a look at another way to validate and parse your
ontology document: use APIs in your host program.

6.3 USING PROGRAMMING APIS TO UNDERSTAND
OWL ONTOLOGY

Another way to validate your OWL document is to use the validation tools program-
matically, meaning you have to load and validate a given OWL document in your

Validating Your OWL Ontology 139

main program by calling the APIs provided by these tools. This is important and
sometimes becomes necessary. For instance, your agent may discover an OWL file
when it visits the Web, and your agent needs to first ensure this is a valid OWL
document. It is simply impossible for the agent to stop its work and wait for you to
manually validate the document using stand-alone tools. Furthermore, in most cases,
the agent has to understand the document and even make inferences based on the
knowledge presented in the document.

Many tools provide a programming interface you can use to accomplish this.
One of these tools, called Jena [40], is becoming very popular. Let us use Jena as
an example to show you how to validate and understand a given OWL document
programmatically.

6.3.1 JENA

You can access Jena from http://jena.sourceforge.net/. Developed by HP Labs, Jena
is a Java framework for building Semantic Web applications. It provides a program-
matic environment for RDF, RDF schema, and OWL, including a rule-based infer-
ence engine.

Jena is being used in more and more Semantic Web development projects and
is included in the tool collections of many Web developers for a simple but important
reason: its excellent documentation. In fact, you can find Jena tutorials and examples
on its official Web site, and its API document is also quite comprehensive and easy
to follow. You can find answers to almost all your questions just by reading their
online document.

Using Jena is also straightforward: you just need to download it to your local
machine. All you see is a package (*.jar) of files that can be used as callable
libraries. You do not have to install anything, and you do not actually see any user
interface at all.

To use it, you simply use the import statement to include the libraries you need.
The following two lines are a typical example when you want to use the APIs from Jena:

import com.hp.hpl.jena.ontology.*;
import com.hp.hpl.jena.rdf.model.ModelFactory;

In order to use the Jena package, you need to ensure that you have set up the
classpath variable correctly: you have to set up this variable in your configuration
file (in both Windows and unIx platforms). List 6.2 is what I have on my Unix
server (it is part of my .cshrec file).

LIST 6.2
CLASSPATH Variable to Set Up Jena Access

setenv CLASSPATH $JENA DIR/lib/antlr.jar:
$JENA_DIR/lib/commons-logging.jar:
SJENA DIR/lib/concurrent.jar:
$JENA DIR/lib/icu4j.jar:
$JENA DIR/1lib/jakarta-oro-2.0.5.jar:

140 Introduction to the Semantic Web and Semantic Web Services

$JENA_DIR/lib/jena.jar:

$JENA DIR/1lib/junit.jar:

SJENA DIR/1lib/log4j-1.2.7.jar:
$JENA DIR/lib/xercesImpl.jar:
$JENA DIR/lib/xml-apis.jar:.

$JENA DIR is the directory on your local machine where you saved your Jena
packages, so replace it by using your own path. Remember that you need to add a
classpath element for every Jena package you want to use; i.e., you have to
enumerate every single one, as I did in List 6.2.

Now, let us take a look at how we can use Jena APIs to validate and understand
our Camera ontology shown in List 5.24.

6.3.2 EXAMPLES

Using Jena to validate our OWL document is straightforward. How do you know
your OWL document is valid? Well, if your OWL document is not valid (for example,
it may have a syntax or semantic error), Jena will throw exceptions even you just
try to load your document into memory using Jena APIs. Reading these exceptions
and error messages will normally give you clues about where the problem lies.

On the other hand, if you have successfully used Jena APIs to load the OWL
document and created an ontology model, your OWL document is successfully
validated. To further confirm this, you can do the following:

e Call Jena API to output the whole ontology.
e Call Jena API to enumerate all the classes you have defined.
e Call Jena API to list all the properties you have defined.

You do not have to do any of the preceding steps if you only want to validate
your document; they are mainly provided to satisfy your curiosity or simply for your
viewing pleasure.

As we have mentioned, Jena provides you with excellent documentation, including
programming examples you can use to do the aforementioned tasks — you can find
these coding examples on the Jena Web site. So I am not going to repeat the code, but
List 6.3 is part of the camera ontology (List 5.24) printed out by using Jena APIs. One
point to note is that after Jena reads the ontology, it changes the ontology document
to the long form. List 6.4 is part of the classes outputted by calling Jena APIs.

LIST 6.3
Part of Jena’s Output After Reading the Camera Ontology (List 5.24)

<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#"

Validating Your OWL Ontology 141

xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:dc="http://purl.org/dc/elements/1.1/" >

<rdf:Description
rdf:about="http://www.yuchen.net/photography/Camera.owl#Camera">
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#Class"/>
</rdf:Description>

<rdf:Description
rdf:about="http://www.yuchen.net/photography/Camera.owl
#Digital">
<rdfs:subClassOf
rdf:resource="http://www.yuchen.net/photography/Camera.owl
#Camera" />
<owl:equivalentClass
rdf:resource="http://www.yetAnotherOne.com#DigitalCamera" />
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#Class"/>
</rdf:Description>

<rdf:Description
rdf:about="http://www.yuchen.net/photography/Camera.owl#SLR">
<owl:disjointWith rdf:resource="http://www.yuchen.net/photography
/Camera.owl#PointAndShoot" />
<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#Class"/>
<owl:equivalentClass
rdf:resource="http://www.yetAnotherOne.com#SingleLensReflex" />
<rdfs:subClassOf
rdf :resource="http://www.yuchen.net/photography/Camera.owl
#Digital"/>
</rdf:Description>

LIST 6.4
Part of the Class Summary Created by Jena After Reading the Camera
Ontology (List 5.24)

http://www.yuchen.net/photography/Camera.owl#SLR
http://www.yuchen.net/photography/Camera.owl#PointAndShoot
http://www.yuchen.net/photography/Camera.owl#Specifications
http://www.yuchen.net/photography/Camera.owl#Film
http://www.yuchen.net/photography/Camera.owl#Person
http://www.yuchen.net/photography/Camera.owl#Camera
http://www.yuchen.net/photography/Camera.owl#Photographer
http://www.yuchen.net/photography/Camera.owl#Professional
http://www.yuchen.net/photography/Camera.owl#ExpensiveSLR
http://www.yuchen.net/photography/Camera.owl#Amateur
http://www.yuchen.net/photography/Camera.owl#Digital
http://www.yetAnotherOne.com#SingleLensReflex
http://www.yetAnotherOne.com#DigitalCamera
http://www.someStandard.org#MegaPixel

142 Introduction to the Semantic Web and Semantic Web Services

Having all these outputs by using Jena APIs, we can be rest assured that our
Camera ontology is valid. In fact, Jena has much more power than just validating a
given OWL document, but for now this is good enough for our purposes. We will
see much more about Jena’s power in later chapters.

Part 3

The Semantic Web:
Real-World Examples
and Applications

For most of us, learning from examples is an effective as well as efficient way to
explore a new subject. In the previous chapters we have learned the core technologies
of the Semantic Web. It is time now for some real-world examples and applications.

The chapters in this part will examine two popular Semantic Web examples in
great detail: Swoogle and Friend of a Friend (FOAF). Swoogle, as a Semantic Web
document search engine, can be quite valuable if you are developing Semantic Web
applications or conducting research work in this area. For us too, it is important
because it gives us a chance to review what we have learned in the previous chapters,
and you will probably be amazed to see there already exist so many ontology
documents and RDF instance documents in the real world. FOAF, as a Semantic
Web application in the domain of social life, will give you a flavor of using Semantic
Web technologies to integrate distributed information over the Internet to generate
interesting results. The Semantic Web, to some extent, is all about automatic dis-
tributed information processing on a large scale.

This part will also discuss in depth the issue of semantic markup. So far, we
have been repeatedly mentioning the idea of “adding semantics to the Web,” and as
you will see, the process of markup is exactly where this idea translates into action.
The rest of the book will also heavily depend on semantic markup as well.

As an example of using the metadata added by semantic markup, we will also
revisit the project of building a Semantic Web search engine in this part. In fact, we
will design a prototype system whose unique indexation and search process will

144 Introduction to the Semantic Web and Semantic Web Services

show you the remarkable difference between a traditional search engine and a
Semantic Web search engine. Given that there is still no “final call” about how a
Semantic Web search engine should be built, our goal, therefore, is not only to come
up with a possible solution, but also to learn more and appreciate more about the
great expectations that have been offered by the vision of the Semantic Web.

Read on.

